Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Guardian of the Genome': Protein Helps Prevent Damaged DNA in Yeast

03.08.2010
Like a scout that runs ahead to spot signs of damage or danger, a protein in yeast safeguards the yeast cells' genome during replication -- a process vulnerable to errors when DNA is copied -- according to new Cornell research.

Researchers from Cornell University’s Weill Institute for Cell and Molecular Biology have discovered how a protein called Mec1 plays the role of "guardian of the genome," explained Marcus Smolka, assistant professor of molecular biology and genetics. The findings “DNA Damage Signaling Recruits the Rtt107-Slx4 Scaffolds via Dpb11 to Mediate Replication Stress Response,” are detailed in the journal Molecular Cell (July 30, 2010).

Previous studies have shown that cells lacking Mec1 accumulate damaged DNA and become more sensitive to agents that interfere with replication. The researchers report that the Mec1 protein monitors and repairs the machinery responsible for replicating the DNA. At times, when DNA becomes damaged, the replication machinery can actually detach from the DNA -- like a train coming off a track -- but Mec1 coordinates the repair of the machinery and the DNA itself, allowing it to restart and continue replicating.

"Mec1 organizes the cell's response against things that jeopardize the integrity of the genome," Smolka said.

... more about:
»DNA »Genome »Molecular Target »Protein »Slx4 »cell death

During the replication process, Mec1 accumulates at trouble spots such as lesions in the DNA or other blocks to replication. Mec1 is known as a kinase, a type of enzyme that modifies other proteins by adding a phosphate group to them (a process called phosphorylation), which then leads to a functional change in the protein. The researchers report that Mec1 adds a phosphate group to a protein known as Slx4, which then triggers Slx4 to anchor to the replication machinery. Slx4 then can employ a variety of tools to repair DNA and the replication machinery.

The findings are important because researchers have discovered counterparts (called orthologues) to Mec1, other related proteins with similar biological pathways in humans. Also, mutations to the human genes that produce Mec1 and related proteins can lead to cancer predisposition and neurological disorders. At the same time, cancer cells employ their own similar replication repair system, so understanding the process may help researchers design interventions that interrupt replication of cancer DNA.

Recently, other researchers discovered that the human version of Mec1, called ATR, phosphorylates a protein that is the human counterpart to Slx4. The next step, Smolka said, will be to see if after phosphorylation the human Slx4 also anchors to the replication machinery to repair any damaged machinery or DNA.

Co-authors include Patrice Ohouo, a graduate student in biochemistry, molecular and cell biology; Francisco M. Bastos de Oliveira, a postdoctoral researcher; and Beatriz Almeida, a research support specialist; all members of Smolka's lab.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

Further reports about: DNA Genome Molecular Target Protein Slx4 cell death

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>