Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Grow your own transplant' may be possible for men with type 1 diabetes

Researchers turn human testes cells into insulin-producing islet cells; diabetic mice were 'cured' for a week

Men with type 1 diabetes may be able to grow their own insulin-producing cells from their testicular tissue, say Georgetown University Medical Center (GUMC) researchers who presented their findings today at the American Society of Cell Biology 50th annual meeting in Philadelphia.

Their laboratory and animal study is a proof of principle that human spermatogonial stem cells (SSCs) extracted from testicular tissue can morph into insulin-secreting beta islet cells normally found in the pancreas. And the researchers say they accomplished this feat without use of any of the extra genes now employed in most labs to turn adult stem cells into a tissue of choice.

"No stem cells, adult or embryonic, have been induced to secrete enough insulin yet to cure diabetes in humans, but we know SSCs have the potential to do what we want them to do, and we know how to improve their yield," says the study's lead investigator, G. Ian Gallicano, Ph.D., an associate professor in the Department of Cell Biology and Director of the Transgenic Core Facility at GUMC.

Given continuing progress, Gallicano says his strategy could provide a unique solution to treatment of individuals with type 1 diabetes (juvenile onset diabetes). Several novel therapies have been tried for these patients, but each has drawbacks. Transplanting islet cells from deceased donors can result in rejection, plus few such donations are available. Researchers have also cured diabetes in mice using induced pluripotent stem (IPS) cells – adult stem cells that have been reprogrammed with other genes to behave like embryonic stem cells – but this technique can produce teratomas, or tumors, in transfected tissue, as well as problems stemming from the external genes used to create IPS cells, Gallicano says.

Instead of using IPS cells, the researchers turned to a readily available source of stem cells, the SSCs that are the early precursors to sperm cells. They retrieved these cells from deceased human organ donors.

Because SSCs already have the genes necessary to become embryonic stem cells, it is not necessary to add any new genes to coax them to morph into these progenitor cells, Gallicano says. "These are male germ cells as well as adult stem cells."

"We found that once you take these cells out of the testes niche, they get confused, and will form all three germ layers within several weeks," he says. "These are true, pluripotent stem cells."

The research team took 1 gram of tissue from human testes and produced about 1 million stem cells in the laboratory. These cells showed many of the biological markers that characterize normal beta islet cells.

They then transplanted those cells into the back of immune deficient diabetic mice, and were able to decrease glucose levels in the mice for about a week – demonstrating the cells were producing enough insulin to reduce hyperglycemia.

While the effect lasted only week, Gallicano says newer research has shown the yield can be substantially increased.

The research was funded in part by the American Diabetes Association, patient contributions to the GUMC Office of Advancement, support from GUMC diabetes specialist Stephen Clement, M.D., and a grant from GUMC.

Co-authors include Anirudh Saraswathula, a student at Thomas Jefferson High School for Science and Technology in Alexandria, Va. GUMC researchers Shenglin Chen Ph.D., Stephen Clement, M.D., Martin Dym, Ph.D., and Asif Zakaria, Ph.D., also contributed to the research. The authors report having no personal financial interests related to the study.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Georgetown Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO). In fiscal year 2009-2010, GUMC accounted for 79 percent of Georgetown University's extramural research funding.

Karen Mallet | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>