Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Green' hair bleach may become environmentally friendly consumer product

26.03.2009
Scientists from Japan today reported development of what could be the world's first "green" hair bleach, an environmentally friendly preparation for lightening the color of hair on the head and other parts of the body without the unwanted effects of the bleaches used by millions of people each year.

Speaking here at the 237th National Meeting of the American Chemical Society, Kenzo Koike, Ph.D., pointed out that traditional hair bleaches rely on hydrogen peroxide. Peroxide is highly effective in oxidizing, or breaking down, melanin, the black pigment that gives hair a dark color.

However, peroxide bleaches have several disadvantages. "Bleach usually has to be repeated, for example, once every three months, in order to keep the satisfactory level of color because hair grows 1 cm. each month," explained Koike, who is with the Kao Corporation's Beauty Research Center in Tokyo. "In changing from a dark brown to a light blonde color, consumers may have to bleach several times. Repeated bleaching may compound another disadvantage of hydrogen peroxide — hair damage."

He added that hydrogen peroxide is a harsh material. Repeated use can leave hair brittle and lifeless, with almost no attractive sheen. It also can irritate the scalp and other parts of the body.

Those unwanted effects have set scientists on a quest for milder bleaching agents, added Koike, who will discuss ways to improve color removal, including making it more effective and convenient. Koike said that his new "green" hair treatment may be the long-awaited solution.

In the ACS report, he described isolation of an enzyme from a strain of Basidiomycete ceriporiopsis, a type of "white-rot" fungus that has also shown potential to degrade and clean up pollutants in soil. The enzyme naturally degrades melanin. It has the added benefit of combating the effects of free radicals, highly reactive agents produced by hydrogen peroxide that are responsible for its damaging effects in making hair brittle, dull, and difficult-to-manage.

"I think this is the first enzyme found that degrades melanin," he says, adding that it could be added to traditional hair bleaches to prevent hair damage, leading to hair care products that use less hydrogen peroxide.

Laboratory tests show that the enzyme is effective in bleaching synthetic melanin and melanin in human hair. Koike is working on incorporating it into conventional peroxide hair bleaches. Because the enzyme needs hydrogen peroxide to complete a chemical reaction, a small amount of peroxide would be needed for a product to work. So far, researchers are hampered by having access to only small amounts of the enzyme — a problem they expect to solve and move ahead with further tests, including clinical trials on humans.

Koike's short-term goal is pinning down how the enzyme affects melanin. "Although I expect it can degrade melanin by its oxidation, we don't know the mechanism of the reaction. We should examine it and test it more and more."

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>