Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Green' hair bleach may become environmentally friendly consumer product

Scientists from Japan today reported development of what could be the world's first "green" hair bleach, an environmentally friendly preparation for lightening the color of hair on the head and other parts of the body without the unwanted effects of the bleaches used by millions of people each year.

Speaking here at the 237th National Meeting of the American Chemical Society, Kenzo Koike, Ph.D., pointed out that traditional hair bleaches rely on hydrogen peroxide. Peroxide is highly effective in oxidizing, or breaking down, melanin, the black pigment that gives hair a dark color.

However, peroxide bleaches have several disadvantages. "Bleach usually has to be repeated, for example, once every three months, in order to keep the satisfactory level of color because hair grows 1 cm. each month," explained Koike, who is with the Kao Corporation's Beauty Research Center in Tokyo. "In changing from a dark brown to a light blonde color, consumers may have to bleach several times. Repeated bleaching may compound another disadvantage of hydrogen peroxide — hair damage."

He added that hydrogen peroxide is a harsh material. Repeated use can leave hair brittle and lifeless, with almost no attractive sheen. It also can irritate the scalp and other parts of the body.

Those unwanted effects have set scientists on a quest for milder bleaching agents, added Koike, who will discuss ways to improve color removal, including making it more effective and convenient. Koike said that his new "green" hair treatment may be the long-awaited solution.

In the ACS report, he described isolation of an enzyme from a strain of Basidiomycete ceriporiopsis, a type of "white-rot" fungus that has also shown potential to degrade and clean up pollutants in soil. The enzyme naturally degrades melanin. It has the added benefit of combating the effects of free radicals, highly reactive agents produced by hydrogen peroxide that are responsible for its damaging effects in making hair brittle, dull, and difficult-to-manage.

"I think this is the first enzyme found that degrades melanin," he says, adding that it could be added to traditional hair bleaches to prevent hair damage, leading to hair care products that use less hydrogen peroxide.

Laboratory tests show that the enzyme is effective in bleaching synthetic melanin and melanin in human hair. Koike is working on incorporating it into conventional peroxide hair bleaches. Because the enzyme needs hydrogen peroxide to complete a chemical reaction, a small amount of peroxide would be needed for a product to work. So far, researchers are hampered by having access to only small amounts of the enzyme — a problem they expect to solve and move ahead with further tests, including clinical trials on humans.

Koike's short-term goal is pinning down how the enzyme affects melanin. "Although I expect it can degrade melanin by its oxidation, we don't know the mechanism of the reaction. We should examine it and test it more and more."

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>