Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Green' hair bleach may become environmentally friendly consumer product

26.03.2009
Scientists from Japan today reported development of what could be the world's first "green" hair bleach, an environmentally friendly preparation for lightening the color of hair on the head and other parts of the body without the unwanted effects of the bleaches used by millions of people each year.

Speaking here at the 237th National Meeting of the American Chemical Society, Kenzo Koike, Ph.D., pointed out that traditional hair bleaches rely on hydrogen peroxide. Peroxide is highly effective in oxidizing, or breaking down, melanin, the black pigment that gives hair a dark color.

However, peroxide bleaches have several disadvantages. "Bleach usually has to be repeated, for example, once every three months, in order to keep the satisfactory level of color because hair grows 1 cm. each month," explained Koike, who is with the Kao Corporation's Beauty Research Center in Tokyo. "In changing from a dark brown to a light blonde color, consumers may have to bleach several times. Repeated bleaching may compound another disadvantage of hydrogen peroxide — hair damage."

He added that hydrogen peroxide is a harsh material. Repeated use can leave hair brittle and lifeless, with almost no attractive sheen. It also can irritate the scalp and other parts of the body.

Those unwanted effects have set scientists on a quest for milder bleaching agents, added Koike, who will discuss ways to improve color removal, including making it more effective and convenient. Koike said that his new "green" hair treatment may be the long-awaited solution.

In the ACS report, he described isolation of an enzyme from a strain of Basidiomycete ceriporiopsis, a type of "white-rot" fungus that has also shown potential to degrade and clean up pollutants in soil. The enzyme naturally degrades melanin. It has the added benefit of combating the effects of free radicals, highly reactive agents produced by hydrogen peroxide that are responsible for its damaging effects in making hair brittle, dull, and difficult-to-manage.

"I think this is the first enzyme found that degrades melanin," he says, adding that it could be added to traditional hair bleaches to prevent hair damage, leading to hair care products that use less hydrogen peroxide.

Laboratory tests show that the enzyme is effective in bleaching synthetic melanin and melanin in human hair. Koike is working on incorporating it into conventional peroxide hair bleaches. Because the enzyme needs hydrogen peroxide to complete a chemical reaction, a small amount of peroxide would be needed for a product to work. So far, researchers are hampered by having access to only small amounts of the enzyme — a problem they expect to solve and move ahead with further tests, including clinical trials on humans.

Koike's short-term goal is pinning down how the enzyme affects melanin. "Although I expect it can degrade melanin by its oxidation, we don't know the mechanism of the reaction. We should examine it and test it more and more."

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>