Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Green' energy from algae

10.08.2009
KIT 'algae platform' develops efficient photoreactors and novel cell decomposition methods

In view of the shortage of petrochemical resources and climate change, development of CO2-neutral sustainable fuels is one of the most urgent challenges of our times.

Energy plants like rape or oil palm are being discussed fervently, as they may also be used for food production. Hence, cultivation of microalgae may contribute decisively to tomorrow's energy supply. For energy production from microalgae, KIT scientists are developing closed photo-bioreactors and novel cell disruption methods.

Microalgae are monocellular, plant-like organisms engaged in photosynthesis and converting carbon dioxide (CO2) into biomass. From this biomass, both potential resources and active substances as well as fuels like biodiesel may be produced. While growing, algae take up the amount of CO2 that is later released again when they are used for energy production. Hence, energy from algae can be produced in a CO2-neutral manner contrary to conventional energy carriers.

Apart from CO2-neutral closed loop management, algae have an-other advantage: Industrial CO2 emissions may be used as a "re-source", as algae grow faster at high carbon dioxide concentrations and, hence, produce more biomass for energy production.

However, this is not their only advantage: "Compared to land plants, algae produce five times as much biomass per hectare and contain 30 to 40% oil usable for energy production", says Professor Cle-mens Posten, who directs this research activity at the KIT Institute of Life Science Engineering. As the algae may also be cultivated in arid i.e. dry, areas not suited for agriculture, there is hardly any competition with agricultural areas. There, however, closed systems are required.

Presently, algae are being produced in open ponds in southern countries of relatively small productivity. This is where Posten's new technology starts. "In terms of process technology, our approach is completely different, as we are working with closed photobioreactors", underlines the scientist. "Our plants convert solar energy into biomass, the efficiency being five times higher than that in open ponds." The plates in usual photo-bioreactors are arranged verti-cally. "Every alga sees a little bit less light, but the plant is operated at increased efficiency", emphasizes the biologist and electrical engineer. Modern designs under investigation will find more intelligent ways to light distribution.

Consequently, algae production does not only work in countries with an extremely high solar irradiation. Most algae need a maximum of ten percent of the incident sunlight intensity. According to Posten, the remaining fraction would just be wasted, if light management in the photobioreactor would not be optimum. Posten points out that the Sahara offers just twice as much sun as Central Europe. But there, the reactor contents would have to be cooled. Other advantages of the closed system are drastic savings of water and fertilizers. Double use of algae for the production of food or fine chemicals and subsequent energy production from the residualbiomass may also be conceivable.

Posten's institute hosts one of the two KIT working groups focusing on research in the field of algae biotechnology. "As far as the development of photobioreactors is concerned, we are among the three locations worldwide, where considerable progress is being achieved in both process technology and biology", explains Posten.

The stop of his research area on the southern KIT campus marks the starting point of research conducted by the Institute for Pulsed Power and Microwave Technology on the northern campus of the KIT. Here, it is focused on extracting the valuable constituents of the algae biomass by an electric pulsed treatment. So far, Dr. Georg Müller, head of this institute's Pulsed Power Technology Division, has studied the decomposition of plant cells of olives, grapes, apples, sugar beets, and terrestrial energy plants in cooperation with partners from research and industry. Partly, large-scale facilities were constructed. "It is our objective to develop new economically efficient and sustainable extraction methods to obtain a maximum amount of cell constituents from the algae that can be used for energy production", says Müller. "The plant cells are exposed to a high electric field for a very short term. This causes a perforation of the cell membrane and the constituents are released."

Cooperation of both working groups now aims at bundling the existing know-how, with starting funds being provided by the KIT Energy Center. It is planned to establish a KIT "Algae Platform" for energy production from microalgae. In the medium term, pilot-scale and demonstration plants shall be built on the northern KIT campus, with the favorable conditions in terms of space and infrastructure being made use of. "This will represent a major node in the presently rather rapid networking of algae biotechnology", emphasizes Posten. To make energy production from algae economically efficient, it will be focused on minimizing investment and operation costs of photobioreactors and on developing highly efficient processes for the harvesting and decomposition of algae.

To close the cycle for the complete use of algae biomass for energy production, KIT researchers even go another step forwards. The biomass remaining after extraction (60 – 70%) is planned to be con-verted into other energy carriers like hydrogen or methane by means of the hydrothermal gasification process developed on the northern campus.

The Karlsruhe Institute of Technology (KIT) is one of Europe's leading energy research establishments: The KIT Energy Center pools fundamental research with applied research into all relevant energy sources for industry, households, services, and mobility. Holistic assessment of the energy cycle also covers conversion processes and energy efficiency. The KIT Energy Center links competences in engineering and science with know-how in economics, the humanities, and social science as well as law. The activities of the KIT Energy Center are organ-ized in seven topics: Energy conversion, renewable energies, energy storage and distribution, efficient energy use, fusion technology, nuclear power and safety, and energy systems analysis.

The Karlsruhe Institute of Technology is the merger of the Forschungszentrum Karlsruhe, member of the Helmholtz Association, and the Universität Karlsruhe. This merger will give rise to an institution of internationally excellent research and teaching in natural and engineering sciences. In total, the KIT has 8000 employees and an annual budget of 700 million Euros. The KIT focuses on the knowledge triangle of research – teaching – in-novation. It sets new standards in the promotion of young sci-entists and attracts top scientists from all over the world. More-over, KIT is a leading innovation partner of industry.

Monika Landgraf | EurekAlert!
Further information:
http://www.kit.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>