Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Good' prion-like proteins boost immune response

09.08.2011
A person's ability to battle viruses at the cellular level remarkably resembles the way deadly infectious agents called prions misfold and cluster native proteins to cause disease, UT Southwestern Medical Center researchers report.

This study marks the first discovery of so-called "good" prion-like proteins in human cells and the first to find such proteins involved in innate immunity: the way the body recognizes and responds to threats from viruses or other external agents, said Dr. Zhijian "James" Chen, professor of molecular biology and senior author of the study in the Aug. 5 print edition of the journal Cell.

"An understanding of how cells maintain good prion-like proteins called MAVS [mitochondrial antiviral signaling] protein may help us understand how some prions turn bad," said Dr. Chen, a Howard Hughes Medical Institute investigator at UT Southwestern. Moreover, the research may also deepen our knowledge of innate immunity and host defense, he said.

Prions are misfolded, self-perpetuating proteins responsible for fatal brain infections such as bovine spongiform encephalopathy – so-called mad cow disease – in cattle and the extremely rare variant Creutzfeldt-Jakob Disease (vCJD) in some people who eat beef from infected cattle. Currently all prion-related diseases are untreatable and are fatal.

The MAVS prion-like proteins usually are scattered on the membranes of the energy-producing organelles called the mitochondria that reside inside cells throughout the body, he explained.

UT Southwestern researchers, investigating the cellular response to invasion by a member of the family of viruses that includes influenza and hepatitis, discovered that the MAVS proteins change shape and recruit other MAVS proteins to misfold and aggregate [cluster] in tough clumps on the surface of the mitochondrial membranes to defend against viral assault, Dr. Chen said.

The researchers created a setup that mimicked the human immune response, but in a controlled laboratory environment where they were able to break open cells and study the cellular components. When those components were mixed with viral RNA (the genetic material also known as ribonucleic acid), the MAVS proteins still formed large clusters.

"Remarkably, the MAVS proteins behave like prions and effectively convert nearby proteins into aggregates on the mitochondrial membrane," Dr. Chen said. He noted that the aggregates are necessary for the cells to churn out immunity-boosting interferon molecules. When the MAVS activity is blocked, the antiviral defense stops.

The MAVS' prion-like mechanism gives no indication of the out-of-control replication seen in disease-causing prions, Dr. Chen said, providing an intriguing area for future research.

Other UT Southwestern researchers involved in the study were lead author Dr. Fajian Hou, instructor of molecular biology; Dr. Lijun Sun, assistant professor of molecular biology and an HHMI research specialist; Dr. Hui Zheng, postdoctoral fellow in cell biology; Brian Skaug, a student in the medical scientist training program; and Dr. Qui-Xing Jiang, assistant professor of cell biology.

The study was funded by grants from the National Institutes of Health and the Welch Foundation.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>