Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Good' bacteria keep immune system primed to fight future infections

27.01.2010
Scientists have long pondered the seeming contradiction that taking broad-spectrum antibiotics over a long period of time can lead to severe secondary bacterial infections. Now researchers from the University of Pennsylvania School of Medicine may have figured out why.

The investigators show that "good" bacteria in the gut keep the immune system primed to more effectively fight infection from invading pathogenic bacteria. Altering the intricate dynamic between resident and foreign bacteria – via antibiotics, for example – compromises an animal’s immune response, specifically, the function of white blood cells called neutrophils.

Senior author Jeffrey Weiser, MD, professor of Microbiology and Pediatrics, likens these findings to starting a car: It's much easier to start moving if a car is idling than if its engine is cold. Similarly, if the immune system is already warmed up, it can better cope with pathogenic invaders. The implication of these initial findings in animals, he says, is that prolonged antibiotic use in humans may effectively throttle down the immune system, such that it is no longer at peak efficiency.

“Neutrophils are being primed by innate bacterial signals, so they are ready to go if a microbe invades the body," Weiser explains. "They are sort of 'idling', and the baseline system is already turned on."

Weiser and first author Thomas Clarke, PhD, a postdoctoral fellow in the Weiser lab, published their findings last week in Nature Medicine.

"One of the complications of antibiotic therapy is secondary infection," Weiser explains. "This is a huge problem in hospitals, but there hasn't been a mechanistic understanding of how that occurs. We suggest that if the immune system is on idle, and you treat someone with broad-spectrum antibiotics, then you turn the system off. The system is deprimed and will be less efficient at responding quickly to new infections."

The findings also provide a potential explanation for the anecdotal benefits of probiotic therapies because keeping your immune system primed by eating foods enhanced with "good" bacteria may help counteract the negative effects of sickness and antibiotics.

Researchers have for many years understood that most bacteria in the body are not "bad." In fact, humans (and mice) have a symbiotic relationship with their resident microbes that significantly impacts, among other things, metabolism and weight homeostasis. As shown in this study, microbes also affect the innate immune response, via the cellular protein Nod1.

Present within neutrophils, Nod1 is a receptor that recognizes parts of the cell wall of bacteria. Weiser and his colleagues found that neutrophils derived from mice engineered to lack Nod1 are less effective at killing two common pathogens, Streptococcus pneumoniae and Staphylococcus aureus, than neutrophils from mice that do express the receptor.

In addition, neutrophils from mice that were raised in a germ-free environment or on antibiotics were likewise diminished in their immune responses, but this effect was not permanent: Re-exposure of these mice to a conventional environment (that is, one containing normal bacteria) restored immune function.

The team provided evidence for a potential mechanism for these observations by showing that bacterial cell wall material could be detected in the blood of normal mice, and that it influences neutrophils in the bone marrow. Finally, the team demonstrated they could improve immune function by treating both antibiotic-treated mice and human neutrophils with the Nod1 ligand – a finding that suggests it may be possible to counter the adverse consequences of antibiotics in humans.

The study was funded by the US Public Health Service.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #3 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.
Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>