Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Gold' fish thrive, cancers die

28.09.2010
Rice scientists use plasmonic nanobubbles in living organisms to detect and eliminate implanted human prostate cancer cells

Rice University physicist Dmitri Lapotko has demonstrated that plasmonic nanobubbles, generated around gold nanoparticles with a laser pulse, can detect and destroy cancer cells in vivo by creating tiny, shiny vapor bubbles that reveal the cells and selectively explode them.

A paper in the October print edition of the journal Biomaterials details the effect of plasmonic nanobubble theranostics on zebra fish implanted with live human prostate cancer cells, demonstrating the guided ablation of cancer cells in a living organism without damaging the host.

Lapotko and his colleagues developed the concept of cell theranostics to unite three important treatment stages -- diagnosis, therapy and confirmation of the therapeutic action -- into one connected procedure. The unique tunability of plasmonic nanobubbles makes the procedure possible. Their animal model, the zebra fish, is nearly transparent, which makes it ideal for such in vivo research.

The National Institutes of Health has recognized the potential of Lapotko's inspired technique by funding further research that holds tremendous potential for the theranostics of cancer and other diseases at the cellular level. Lapotko's Plasmonic Nanobubble Lab, a joint American-Belarussian laboratory for fundamental and biomedical nanophotonics, has received a grant worth more than $1 million over the next four years to continue developing the technique.

In earlier research in Lapotko's home lab in the National Academy of Sciences of Belarus, plasmonic nanobubbles demonstrated their theranostic potential. In another study on cardiovascular applications, nanobubbles were filmed blasting their way through arterial plaque. The stronger the laser pulse, the more damaging the explosion when the bubbles burst, making the technique highly tunable. The bubbles range in size from 50 nanometers to more than 10 micrometers.

In the zebra-fish study, Lapotko and his collaborators at Rice directed antibody-tagged gold nanoparticles into the implanted cancer cells. A short laser pulse overheated the surface of the nanoparticles and evaporated a very thin volume of the surrounding medium to create small vapor bubbles that expanded and collapsed within nanoseconds; this left cells undamaged but generated a strong optical scattering signal that was bright enough to detect a single cancer cell.

A second, stronger pulse generated larger nanobubbles that exploded (or, as the researchers called it, "mechanically ablated") the target cell without damaging surrounding tissue in the zebra fish. Scattering of the laser light by the second "killer" bubble confirmed the cellular destruction.

That the process is mechanical in nature is key, Lapotko said. The nanobubbles avoid the pitfalls of chemo- or radiative therapy that can damage healthy tissue as well as tumors.

"It's not a particle that kills the cancer cell, but a transient and short event," he said. "We're converting light energy into mechanical energy."

The new grant will allow Lapotko and his collaborators to study the biological effects of plasmonic nanobubbles and then combine their functions into a single sequence that would take a mere microsecond to detect and destroy a cancer cell and confirm the results. "By tuning their size dynamically, we will tune their biological action from noninvasive sensing to localized intracellular drug delivery to selective elimination of specific cells," he said.

"Being a stealth, on-demand probe with tunable function, the plasmonic nanobubble can be applied to all areas of medicine, since the nanobubble mechanism is universal and can be employed for detecting and manipulating specific molecules, or for precise microsurgery."

Lapotko's co-authors on the Biomaterials paper are Daniel Wagner, assistant professor of biochemistry and cell biology; Mary "Cindy" Farach-Carson, associate vice provost for research and professor of biochemistry and cell biology; Jason Hafner, associate professor of physics and astronomy and of chemistry; Nikki Delk, postdoctoral research associate; and Ekaterina Lukianova-Hleb, researcher in the Plasmonic Nanobubble Lab.

Related materials:

Read the abstract here: http://tinyurl.com/nanobub.
Artwork is available here: http://www.media.rice.edu/images/media/NEWSRELS/Xenograft.jpg

http://www.media.rice.edu/images/media/NEWSRELS/group.jpg

A short video showing targeted prostate cells migrating in zebra fish is available here:

http://www.youtube.com/watch?v=41wdkYlVa2A

An animation showing how plasmonic nanobubbles are used to destroy cancer cells is available here:

http://www.youtube.com/watch?v=AUQDyCeQvgk

CAPTIONS:

(Group)
Researchers based at Rice University and the National Academy of Sciences of Belarus have demonstrated their method to kill cancer cells in vivo with plasmonic nanobubbles. From left: Dmitri Lapotko, Daniel Wagner and Ekaterina Lukianova-Hleb at Rice's zebra-fish lab. (Credit Jeff Fitlow/Rice University)
(Xenograft)
A set of images shows: A) a differential interference contrast (DIC) white light image of zebrafish embryo labeled with fluorescent human prostate cancer cells; B) a fluorescent image of the embryo in A, revealing the xenografted cancer cells; C) a high-magnification DIC image of the ventral tail fin; D) a fluorescent image of the same region in C that reveals xenografted cells (arrowhead); and E) a merged image of C and D. (Credit: Wagner Lab/Rice University)
(Video)
A time-lapse movie shows xenografted prostate cancer cells migrating in a live zebra-fish embryo's tailfin. At left is a differential interference contrast microscopy image; at right is a fluorescent image of the same cells. (Credit: Wagner Lab/Rice University)
(Animation)
This short animation demonstrates how plasmonic nanobubbles developed at Rice University can be used to track, kill and confirm the destruction of cancer cells. (Credit: Lapotko Lab/Rice University)

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>