Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fountain of youth' technique rejuvenates aging stem cells

28.11.2012
Study moves scientists 1 step closer to creating youthful heart patches from old cells

A new method of growing cardiac tissue is teaching old stem cells new tricks. The discovery, which transforms aged stem cells into cells that function like much younger ones, may one day enable scientists to grow cardiac patches for damaged or diseased hearts from a patient's own stem cells—no matter what age the patient—while avoiding the threat of rejection.

Stem cell therapies involving donated bone marrow stem cells run the risk of patient rejection in a portion of the population, argues Milica Radisic, Canada Research Chair in Functional Cardiovascular Tissue Engineering at the Institute of Biomaterials and Biomedical Engineering (IBBME) and Associate Professor in the Department of Chemical Engineering and Applied Chemistry at the University of Toronto.

One method of avoiding the risk of rejection has been to use cells derived from a patient's own body. But until now, clinical trials of this kind of therapy using elderly patients' own cells have not been a viable option, since aged cells tend not to function as well as cells from young patients.

"If you want to treat these people with their own cells, how do you do this?"

It's a problem that Radisic and her co-researcher, Dr. Ren-Ke Li, think they might have an answer for: by creating the conditions for a 'fountain of youth' reaction within a tissue culture.

Li holds the Canada Research Chair in Cardiac Regeneration and is a Professor in the Division of Cardiovascular Surgery, cross-appointed to IBBME. He is also a Senior Scientist at the Toronto General Research Institute.

Radisic and Li first create a "micro-environment" that allows heart tissue to grow, with stem cells donated from elderly patients at the Toronto General Hospital.

The cell cultures are then infused with a combination of growth factors—common factors that cause blood vessel growth and cell proliferation—positioned in such a way within the porous scaffolding that the cells are able to be stimulated by these factors.

Dr. Li and his team then tracked the molecular changes in the tissue patch cells. "We saw certain aging factors turned off," states Li, citing the levels of two molecules in particular, p16 and RGN, which effectively turned back the clock in the cells, returning them to robust and healthy states.

"It's very exciting research," says Radisic, who was named one of the top innovators under 35 by MIT in 2008 and winner of the 2012 Young Engineers Canada award.

Li and Radisic hope to continue their goal to create the most effective environment in which cells from older patients can be given new life. "We can create much better tissues which can then be used to repair defects such as aneurysms," Li says, as well as repairing damage caused by heart attacks.

The study was recently released in the Journal of the American College of Cardiology, the top journal in the field of cardiovascular medicine.

About IBBME

The Institute of Biomaterials and Biomedical Engineering (IBBME) is an interdisciplinary unit situated between three Faculties at the University of Toronto: Applied Science and Engineering, Dentistry and Medicine. The Institute pursues research in four areas: neural, sensory systems and rehabilitation engineering; biomaterials, tissue engineering and regenerative medicine; molecular imaging and biomedical nanotechnology; medical devices and clinical technologies.

Erin Vollick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>