Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Factory Worker' Signals in Cells Hold Possible Key to Anti-cancer Drugs

14.08.2009
Research from scientists at the UT Health Science Center at San Antonio and Yale University describes gatekeeper-factory worker interactions in cells to govern how obsolete proteins are recycled.

Like any appliance, proteins in living cells eventually become obsolete. The body relies on intricate machinery to tag proteins for recycling at a molecular factory, where they are chopped into pieces. Without recycling, the cell would overflow with molecular garbage and have scarce material to build new proteins.

In a paper posted online Wednesday, Aug. 12, by the journal Structure, researchers Maria Gaczynska, Ph.D., and Pawel Osmulski, Ph.D., of The University of Texas Health Science Center at San Antonio, and Mark Hochstrasser, Ph.D., of Yale University, describe how different parts of the factory communicate with each other to efficiently recycle cellular proteins.

The new findings hold potential ramifications for development of anti-cancer and anti-inflammation drugs, the researchers said.

Giant protein assembly

The machinery, called the UPS (ubiquitin-proteasome system), consists of several hundred proteins that direct obsolete proteins to the factory for recycling. The factory, a giant protein assembly called the proteasome, is equipped with gates, a warehouse and machines – catalytic centers that process the material.

“The gates are there to prevent wrong material – for example, proteins that should not yet be degraded – from entering the factory,” Dr. Gaczynska said. “The gates also help the factory to avoid a flood of raw materials that would choke and disrupt the factory operation. How to open the gates to allow the exact amount of the correct material inside the factory? This is where our work started.”

Gates observed in yeast

The scientists studied yeast proteasomes with an atomic-force microscope at the Health Science Center’s UT Institute of Biotechnology in the Texas Research Park. They discovered that the gates open briefly from time to time to admit materials for digestion. The opening is strictly correlated with the status of the machines, which are catalytic centers.

“It is sort of an invitation: My active centers are free; therefore, I can accept an order to perform a digest,” Dr. Osmulski said. “By signaling the gates how long to stay open, the factory works efficiently without waiting for supplies and without waste products littering the grounds.”

New way to regulate

The team also identified a small piece of machinery that is responsible for signaling the gates.

“We found that we can confuse the factory to keep the gate open by modifying that one piece of the active center,” Dr. Gaczynska said. “You can see immediately the opportunity to regulate the proteasome factory and the whole UPS activity in a totally new and unexplored way. If you also take into account that the gate talks back to the activity centers, the possibilities to control the whole factory are endless.”

Compounds that dampen proteasome activity have already been shown to suppress several cancers.

About the UT Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields. For more information, visit www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>