Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Factory Worker' Signals in Cells Hold Possible Key to Anti-cancer Drugs

14.08.2009
Research from scientists at the UT Health Science Center at San Antonio and Yale University describes gatekeeper-factory worker interactions in cells to govern how obsolete proteins are recycled.

Like any appliance, proteins in living cells eventually become obsolete. The body relies on intricate machinery to tag proteins for recycling at a molecular factory, where they are chopped into pieces. Without recycling, the cell would overflow with molecular garbage and have scarce material to build new proteins.

In a paper posted online Wednesday, Aug. 12, by the journal Structure, researchers Maria Gaczynska, Ph.D., and Pawel Osmulski, Ph.D., of The University of Texas Health Science Center at San Antonio, and Mark Hochstrasser, Ph.D., of Yale University, describe how different parts of the factory communicate with each other to efficiently recycle cellular proteins.

The new findings hold potential ramifications for development of anti-cancer and anti-inflammation drugs, the researchers said.

Giant protein assembly

The machinery, called the UPS (ubiquitin-proteasome system), consists of several hundred proteins that direct obsolete proteins to the factory for recycling. The factory, a giant protein assembly called the proteasome, is equipped with gates, a warehouse and machines – catalytic centers that process the material.

“The gates are there to prevent wrong material – for example, proteins that should not yet be degraded – from entering the factory,” Dr. Gaczynska said. “The gates also help the factory to avoid a flood of raw materials that would choke and disrupt the factory operation. How to open the gates to allow the exact amount of the correct material inside the factory? This is where our work started.”

Gates observed in yeast

The scientists studied yeast proteasomes with an atomic-force microscope at the Health Science Center’s UT Institute of Biotechnology in the Texas Research Park. They discovered that the gates open briefly from time to time to admit materials for digestion. The opening is strictly correlated with the status of the machines, which are catalytic centers.

“It is sort of an invitation: My active centers are free; therefore, I can accept an order to perform a digest,” Dr. Osmulski said. “By signaling the gates how long to stay open, the factory works efficiently without waiting for supplies and without waste products littering the grounds.”

New way to regulate

The team also identified a small piece of machinery that is responsible for signaling the gates.

“We found that we can confuse the factory to keep the gate open by modifying that one piece of the active center,” Dr. Gaczynska said. “You can see immediately the opportunity to regulate the proteasome factory and the whole UPS activity in a totally new and unexplored way. If you also take into account that the gate talks back to the activity centers, the possibilities to control the whole factory are endless.”

Compounds that dampen proteasome activity have already been shown to suppress several cancers.

About the UT Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields. For more information, visit www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>