Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Two-faced' cells discovered in colon cancer

14.12.2012
Immune cells can suppress or promote tumor growth

Northwestern Medicine researchers have discovered a "two-faced" group of cells at work in human colon cancer, with opposing functions that can suppress or promote tumor growth. These cells are a subset of T-regulatory (Treg) cells, known to suppress immune responses in healthy individuals

In this previously unknown Treg subset, the presence of the protein RORãt has been shown to differentiate between cancer-protecting and cancer-promoting properties.

The Northwestern team, led by Khashayarsha Khazaie, research associate professor at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, recently reported their findings in the journal Science Translational Medicine.

"The subset of Tregs that expand in human colon cancer is different from the Tregs that abound in healthy individuals in their ability to suppress inflammation," said Khazaie. "Since their discovery, Tregs have been assumed to be harmful in cancer based on the knowledge that they suppress immunity. More recent clinical studies have challenged this notion. Our work shows that Tregs, by suppressing inflammation, are normally very protective in cancer; it is rather their switch to the expression of RORãt that is detrimental."

The Northwestern team's work builds on observations, which demonstrated that the transfer of Tregs from healthy mice to mice with colitis or colitis-induced cancer actually protected the mice from colitis and colitis-induced cancer.

After identifying the abnormal Treg subset in mice with hereditary colon cancer, Khazaie and lead author Nichole Blatner, research assistant professor at Lurie Cancer Center, worked with Mary Mulcahy, MD, associate professor of hematology and oncology, radiology, and organ transplantation, and David Bentrem, MD, Harold L. and Margaret N. Method Research Professor in Surgery, of Northwestern University Feinberg School of Medicine, to look for the same cells in colon cancer patients.

"To our delight, we found the same Treg alterations in cancer patients," said Khazaie.

Of cancers affecting both men and women, colorectal cancer (cancer of the colon and rectum) is the second leading cancer killer in the United States. In 2012, approximately 140,000 Americans were diagnosed with colon or rectal cancer, while more than 50,000 deaths occurred from either cancer, according to the Centers for Disease Control.

"The significance of our discovery became apparent when by inhibiting RORgt in Tregs we were able to protect mice against hereditary colon cancer," Khazaie said.

He notes that several ongoing clinical trials exist based on targeted elimination of all Tregs in cancer patients. However, the discovery of Treg diversity in cancer, and its central role in control of cancer inflammation, may lead to new approaches for therapeutics.

"Tregs are actually very useful in the fight against cancer," he says. "We can do better by targeting RORãt or other molecules that are responsible for the expansion of this Treg subset, instead of indiscriminately eliminating all Tregs. We are very excited about the therapeutic options that targeting specific subsets of Tregs could provide in human solid tumor cancers, and that is our next immediate goal."

Khazaie's team is moving forward with plans to test novel drugs that inhibit RORãt.

This research was made possible by philanthropic support through the Lurie Cancer Center and Steven Rosen, MD, director of the Lurie Cancer Center and the Genevieve E. Teuton Professor of Medicine at the Feinberg School.

In addition to Northwestern University researchers, Khazaie and Blatner collaborated with Fotini Gounari, University of Chicago, and Christophe Benoist, Harvard Medical School, on this discovery.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>