Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'DNA wires' could help physicians diagnose disease

20.08.2012
In a discovery that defies the popular meaning of the word "wire," scientists have found that Mother Nature uses DNA as a wire to detect the constantly occurring genetic damage and mistakes that ¯ if left unrepaired ¯ can result in diseases like cancer and underpin the physical and mental decline of aging.

That topic ¯ DNA wires and their potential use in identifying people at risk for certain diseases ¯ is the focus of a plenary talk here today during the 244th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society. The meeting, which features about 8,600 reports with an anticipated attendance of 14,000 scientists and others continues here through Thursday.

"DNA is a very fragile and special wire," said Jacqueline K. Barton, Ph.D., who delivered the talk. "You're never going to wire a house with it, and it isn't sturdy enough to use in popular electronic devices. But that fragile state is exactly what makes DNA so good as an electrical biosensor to identify DNA damage."

Barton won the U.S. National Medal of Science, the nation's highest honor for scientific achievement, for discovering that cells use the double strands of the DNA helix like a wire for signaling, which is critical to detecting and repairing genetic damage. She is a professor of chemistry and is chair of the division of chemistry and chemical engineering at the California Institute of Technology in Pasadena.

Damage is constantly occurring to DNA, Barton explained ¯ damage that skin cells, for instance, receive from excessive exposure to sunlight or that lung cells get hit with from carcinogens in cigarette smoke. Cells have a natural repair system in which special proteins constantly patrol the spiral-staircase architecture of DNA. They monitor the 3 billion units, or "base pairs," in DNA, looking for and mending damage from carcinogens and other sources.

Barton and other scientists noticed years ago that the DNA architecture chemically resembles the solid-state materials used in transistors and other electronic components. And DNA's bases, or units, are stacked on top of each other in an arrangement that seemed capable of conducting electricity.

"It's like a stack of copper pennies," said Barton. "And when in good condition and properly aligned, that stack of copper pennies can be conductive. But if one of the pennies is a little bit awry ¯ if it's not stacked so well ¯ then you're not going to be able to get good conductivity in it. But if those bases are mismatched or if there is any other damage to the DNA, as can happen with damage that leads to cancer, the wire is interrupted and electricity will not flow properly."

Barton's team established that the electrons that comprise a flow of electricity can move from one end of a DNA strand to the other, just as they do through an electrical wire. In one recent advance, the team was able to send electricity down a 34-nanometer-long piece of DNA. That might not sound like much — a nanometer is one-tenth the width of a human hair. But that is just the right scale for use in medical diagnostic devices and biosensors to pick up on mutations, or changes, in DNA that could lead to cancer and other diseases.

Barton's research suggested that DNA uses its electrical properties to signal repair proteins that fix DNA damage. If the DNA is no longer conducting electricity properly, that would be a signal for repair proteins to do their thing. Barton's team is applying that knowledge in developing "DNA chips," devices that take advantage of DNA's natural electrical conductivity and its ability to bind to other strands of DNA that have a complementary sequence of base units, and thus probe that sequence for damage. Such a DNA chip would help diagnose disease risk by changes in electrical conductivity resulting from mutations or some other damage.

Other plenary talks featured at the 244th National Meeting & Exposition of the American Chemical Society include:
Chad A. Mirkin, Ph.D., "Spherical nucleic acid (SNA) nanostructures: A new platform for intracellular gene regulation"
Buddy D. Ratner, Ph.D., "A 2012 perspective on biocompatibility: The contributions of the chemist"

John T. Santini, Ph.D., "Multireservoir drug therapies … from science to startups"

Barton and colleagues acknowledge funding from the National Institutes of Health.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Abstract

DNA charge transport chemistry offers an opportunity to carry out redox chemistry at a distance and thus provides a powerful platform for signaling, whether in the design of new sensors or in activating responses across the genome. Many experiments have now shown that DNA-mediated charge transport can arise over long molecular distances but in a reaction that is exquisitely sensitive to perturbations in the DNA base stack. Studies are described to illustrate this chemistry, to design new DNA-based sensors, and to characterize how DNA-binding proteins utilize DNA charge transport for long range signaling.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>