Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Designer sperm' inserts custom genes into offspring

03.12.2013
New research in The FASEB Journal suggests that altering genes in sperm and then inducing fertilization, produces new genes that are present and active in the embryos and inherited to at least the third generation

Get ready: The "new genetics" promises to change faulty genes of future generations by introducing new, functioning genes using "designer sperm." A new research report appearing online in The FASEB Journal, shows that introducing new genetic material via a viral vector into the sperm of mice leads to the presence and activity of those genes in the resulting embryos.

This new genetic material is actually inherited, present and functioning through three generations of the mice tested. This discovery—if successful in humans—could lead to a new frontier in genetic medicine in which diseases and disorders are effectively cured, and new human attributes, such as organ regeneration, may be possible.

"Transgenic technology is a most important tool for researching all kinds of disease in humans and animals, and for understanding crucial problems in biology," said Anil Chandrashekran, Ph.D., study author from the Department of Veterinary Clinical Sciences at The Royal Veterinary College in North Mimms, United Kingdom.

To achieve these results, Chandrashekran and colleagues used lentiviruses to generate transgenic animals via the male germ line. When pseudotyped lentiviral vectors encoding green fluorescent protein (GFP) were incubated with mouse spermatozoa, these sperm were highly successful in producing transgenics. Lentivirally-transduced mouse spermatozoa were used in in vitro fertilization studies and when followed by embryo transfer, at least 42 percent of founders were transgenic for GFP. GFP expression was detected in a wide range of murine tissues, including testis and the transgene was stably transmitted to a third generation of transgenic animals.

"Using modified sperm to insert genetic material has the potential to be a major breakthrough not only in future research, but also in human medicine," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "It facilitates the development of transgenic animal models, and may lead to therapeutic benefits for people as well. For years we have chased effective gene therapies and have hit numerous speed bumps and dead ends. If we are able to able to alter sperm to improve the health of future generations, it would completely change our notions of 'preventative medicine.'"

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 110,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Hypothesis: Anil Chandrashekran, Rupa Sarkar, Adrian Thrasher, Scott E. Fraser, Nicholas Dibb, Colin Casimir, Robert Winston, and Carol Readhead. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. FASEB J fj.13-233999; published ahead of print December 2, 2013, doi:10.1096/fj.13-233999 ; http://www.fasebj.org/content/early/2013/11/28/fj.13-233999.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>