Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Designer sperm' inserts custom genes into offspring

03.12.2013
New research in The FASEB Journal suggests that altering genes in sperm and then inducing fertilization, produces new genes that are present and active in the embryos and inherited to at least the third generation

Get ready: The "new genetics" promises to change faulty genes of future generations by introducing new, functioning genes using "designer sperm." A new research report appearing online in The FASEB Journal, shows that introducing new genetic material via a viral vector into the sperm of mice leads to the presence and activity of those genes in the resulting embryos.

This new genetic material is actually inherited, present and functioning through three generations of the mice tested. This discovery—if successful in humans—could lead to a new frontier in genetic medicine in which diseases and disorders are effectively cured, and new human attributes, such as organ regeneration, may be possible.

"Transgenic technology is a most important tool for researching all kinds of disease in humans and animals, and for understanding crucial problems in biology," said Anil Chandrashekran, Ph.D., study author from the Department of Veterinary Clinical Sciences at The Royal Veterinary College in North Mimms, United Kingdom.

To achieve these results, Chandrashekran and colleagues used lentiviruses to generate transgenic animals via the male germ line. When pseudotyped lentiviral vectors encoding green fluorescent protein (GFP) were incubated with mouse spermatozoa, these sperm were highly successful in producing transgenics. Lentivirally-transduced mouse spermatozoa were used in in vitro fertilization studies and when followed by embryo transfer, at least 42 percent of founders were transgenic for GFP. GFP expression was detected in a wide range of murine tissues, including testis and the transgene was stably transmitted to a third generation of transgenic animals.

"Using modified sperm to insert genetic material has the potential to be a major breakthrough not only in future research, but also in human medicine," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "It facilitates the development of transgenic animal models, and may lead to therapeutic benefits for people as well. For years we have chased effective gene therapies and have hit numerous speed bumps and dead ends. If we are able to able to alter sperm to improve the health of future generations, it would completely change our notions of 'preventative medicine.'"

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 27 societies with more than 110,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Hypothesis: Anil Chandrashekran, Rupa Sarkar, Adrian Thrasher, Scott E. Fraser, Nicholas Dibb, Colin Casimir, Robert Winston, and Carol Readhead. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. FASEB J fj.13-233999; published ahead of print December 2, 2013, doi:10.1096/fj.13-233999 ; http://www.fasebj.org/content/early/2013/11/28/fj.13-233999.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>