Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chemical architects' build materials with potential applications in drug delivery and gas storage

18.06.2013
Home remodelers understand the concept of improving original foundations with more modern elements.

Using this same approach—but with chemistry—researchers in the University of Pittsburgh's Kenneth P. Dietrich School of Arts and Sciences have designed a family of materials that could make drug delivery, gas storage, and gas transport more efficient and at a lower cost. The findings were reported in the latest issue of the Journal of the American Chemical Society (JACS).

The recent work builds upon Pitt Associate Professor of Chemistry Nathaniel Rosi's earlier research published last year in Nature Communications detailing a new class of metal-organic frameworks—crystalline compounds consisting of metal vertices and organic linkers that form porous structures. Last year, Rosi and his team created one of the most porous materials known at the time by changing the size of the vertex (the metal cluster) rather than the length of the organic linkers. Now, in JACS, he and his team have extended those linkers, demonstrating a family of materials even more porous—a property necessary for more efficient gas storage.

"We like to think of ourselves as chemical architects," said Rosi, principal investigator of the project. "Our approach always starts with thinking about structure and, in particular, how we can design and manipulate structure. Here, we demonstrate one of the most porous families of metal-organic frameworks known."

Rosi likens his work to that of a builder remodeling a child's chair. As the child grows taller, the legs of the chair become too short. Because the owner likes the structure and integrity of the chair, the owner decides to lengthen its legs instead of purchasing a new one. This is what Rosi and his team have done with their frameworks: they have used one material as a structural blueprint and replaced another element (the organic linkers) to prepare more porous materials.

In addition to their utility for gas storage, these porous materials could be critical for low-cost industrial separations—when one molecule is separated from another batch of molecules for purification purposes. The petrochemical industry has numerous high-value (and high-cost) separations used to isolate important chemicals involved with oil refining. Some of these separations could benefit from the use of porous materials as filters, said Rosi. Likewise, he notes that the pore size for his class of materials would be particularly useful for separating nanoparticles. Porosity also can affect the efficiency of pharmaceutical delivery into the human body.

An important metric for evaluating the porosity of a material is its pore volume. In Rosi's demonstration, three of these materials have pore volumes exceeding 4 cubic centimeters per gram (cc/g). For perspective, only one other metal-organic framework has a pore volume above this amount, with most others having volumes below 3 cc/g.

"Pore volume is a measure of how empty or vacant a material is—how much space in the material isn't filled," said Rosi. "When the pore openings are large, and the pore volume is large, it opens up the possibility of using the material as a scaffold to precisely organize and position biomolecules or nanoparticles in space."

Rosi and his team are currently investigating high-porous and low-density materials to be used as scaffolds for organizing large molecules and nanoparticles into functional materials.

Rosi's team members include Tao Li, a Pitt graduate student studying chemistry and the lead researcher on the project, along with Pitt undergraduate chemistry students Mark T. Kozlowski and Evan A. Doud, and Chatham University chemistry undergraduate student Maike N. Blakely.

The paper, "Stepwise Ligand Exchange for the Preparation of a Family of Mesoporous MOFs," was first published online May 20 in JACS. A portion of the work was performed with funding from the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of NETL. The authors also credit Pitt's Petersen Institute for Nanoscience and Engineering and the Swanson School of Engineering's Department of Mechanical Engineering and Materials Science for the use of their instruments.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>