Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chemical architects' build materials with potential applications in drug delivery and gas storage

18.06.2013
Home remodelers understand the concept of improving original foundations with more modern elements.

Using this same approach—but with chemistry—researchers in the University of Pittsburgh's Kenneth P. Dietrich School of Arts and Sciences have designed a family of materials that could make drug delivery, gas storage, and gas transport more efficient and at a lower cost. The findings were reported in the latest issue of the Journal of the American Chemical Society (JACS).

The recent work builds upon Pitt Associate Professor of Chemistry Nathaniel Rosi's earlier research published last year in Nature Communications detailing a new class of metal-organic frameworks—crystalline compounds consisting of metal vertices and organic linkers that form porous structures. Last year, Rosi and his team created one of the most porous materials known at the time by changing the size of the vertex (the metal cluster) rather than the length of the organic linkers. Now, in JACS, he and his team have extended those linkers, demonstrating a family of materials even more porous—a property necessary for more efficient gas storage.

"We like to think of ourselves as chemical architects," said Rosi, principal investigator of the project. "Our approach always starts with thinking about structure and, in particular, how we can design and manipulate structure. Here, we demonstrate one of the most porous families of metal-organic frameworks known."

Rosi likens his work to that of a builder remodeling a child's chair. As the child grows taller, the legs of the chair become too short. Because the owner likes the structure and integrity of the chair, the owner decides to lengthen its legs instead of purchasing a new one. This is what Rosi and his team have done with their frameworks: they have used one material as a structural blueprint and replaced another element (the organic linkers) to prepare more porous materials.

In addition to their utility for gas storage, these porous materials could be critical for low-cost industrial separations—when one molecule is separated from another batch of molecules for purification purposes. The petrochemical industry has numerous high-value (and high-cost) separations used to isolate important chemicals involved with oil refining. Some of these separations could benefit from the use of porous materials as filters, said Rosi. Likewise, he notes that the pore size for his class of materials would be particularly useful for separating nanoparticles. Porosity also can affect the efficiency of pharmaceutical delivery into the human body.

An important metric for evaluating the porosity of a material is its pore volume. In Rosi's demonstration, three of these materials have pore volumes exceeding 4 cubic centimeters per gram (cc/g). For perspective, only one other metal-organic framework has a pore volume above this amount, with most others having volumes below 3 cc/g.

"Pore volume is a measure of how empty or vacant a material is—how much space in the material isn't filled," said Rosi. "When the pore openings are large, and the pore volume is large, it opens up the possibility of using the material as a scaffold to precisely organize and position biomolecules or nanoparticles in space."

Rosi and his team are currently investigating high-porous and low-density materials to be used as scaffolds for organizing large molecules and nanoparticles into functional materials.

Rosi's team members include Tao Li, a Pitt graduate student studying chemistry and the lead researcher on the project, along with Pitt undergraduate chemistry students Mark T. Kozlowski and Evan A. Doud, and Chatham University chemistry undergraduate student Maike N. Blakely.

The paper, "Stepwise Ligand Exchange for the Preparation of a Family of Mesoporous MOFs," was first published online May 20 in JACS. A portion of the work was performed with funding from the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of NETL. The authors also credit Pitt's Petersen Institute for Nanoscience and Engineering and the Swanson School of Engineering's Department of Mechanical Engineering and Materials Science for the use of their instruments.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>