Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'More Cavalier' plants could counter effects of climate change

17.12.2008
A leading UK plant scientist has called for the application of new in-depth data analysis of plants' natural control systems to enable plant breeders to develop varieties that are naturally less conservative.

'To develop varieties of crops that can produce high yield sustainably under changing climatic conditions we need to be able to override plants' natural tendency to batten down the hatches really hard when times are tough, and to hedge their bets when times are good,' said Professor Ottoline Leyser of the University of York.

Professor Leyser was speaking at a recent meeting of the Strategy Advisory Board* of the Biotechnology and Biological Sciences Research Council - the major public funder of plant science research in the UK.

She told the meeting that plants are naturally conservative. Evolution has driven them to plan for the long term and adopt a cautious rate of growth in case things get really bad in the future. While this makes sense in the wild, said Professor Leyser, for crop plants we want varieties that will behave in a more 'cavalier fashion' and maintain a faster rate of growth in a range of environments, investing that growth specifically in plant parts of agricultural relevance.

Although 10,000 years of plant breeding has made significant inroads in modifying plant growth properties, sophisticated new information about plant genes and their functions provides exciting opportunities for plant breeders to tap into the unused potential of plants to maintain productivity, even in harsh conditions.

There is a tendency to assume that plants are growing as fast as they can given the resources available to them, but multiple lines of evidence now show that this is not the case. Plants have specific genes that limit growth, and quite simple changes in those genes can increase productivity. The trick, however, is to breed plants with more sophisticated combinations of these genes that will still respond to the environment, protecting themselves from harsh conditions, but in a more light-touch way. To do that, we need to understand how these genes work together as a system to regulate growth.

Professor Leyser said that one of the big challenges is to channel this information rapidly into large scale plant breeding.

* The Board advises BBSRC Council on its strategic priorities and planning, and brings together academic and industry based researchers.

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>