Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Little brown balls' tie malaria and algae to common ancestor

02.06.2010
Inconspicuous "little brown balls" in the ocean have helped settle a long-standing debate about the origin of malaria and the algae responsible for toxic red tides, according to a new study by University of British Columbia researchers.

In an article published this week in the Proceedings of the National Academy of Sciences Early Edition, UBC Botany Prof. Patrick Keeling describes the genome of Chromera and its role in definitively linking the evolutionary histories of malaria and dinoflalgellate algae.

"Under the microscope, Chromera looks like boring little brown balls," says Keeling. "In fact, the ocean is full of little brown and green balls and they're often overlooked in favour of more glamorous organisms, but this one has proved to be more interesting than its flashier cousins."

First described in the journal Nature in 2008, Chromera is found as a symbiont inside corals. Although it has a compartment – called a plastid – that carries out photosynthesis like other algae and plants, Chromera is closely related to apicomplexan parasites – including malaria. This discovery raised the possibility that Chromera may be a "missing link" between the two.

Now Keeling, along with PhD candidate Jan Janouskovec, postdoctoral fellow Ales Horak and collaborators from the Czech Republic, has sequenced the plastid genome of Chromera and found features that were passed down to both apicomplexan and dinoflagellate plastids, linking the two lineages.

"These tiny organisms have a huge impact on humanity in very different ways," says Keeling. "The tool used by dinoflagellates and Chromera to do good – symbiosis with corals – at some point became an infection mechanism for apicomplexans like malaria to infect healthy cells.

"Resolving their evolutionary origins not only settles a long-standing scientific debate but could ultimately provide crucial information for tackling diseases and environmental concerns."

Photographs of Chromera is available at http://www.publicaffairs.ubc.ca/2010/06/01/"little-brown-balls"-tie-malaria-and-algae-to-common-ancestor-ubc-research

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>