Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Little brown balls' tie malaria and algae to common ancestor

02.06.2010
Inconspicuous "little brown balls" in the ocean have helped settle a long-standing debate about the origin of malaria and the algae responsible for toxic red tides, according to a new study by University of British Columbia researchers.

In an article published this week in the Proceedings of the National Academy of Sciences Early Edition, UBC Botany Prof. Patrick Keeling describes the genome of Chromera and its role in definitively linking the evolutionary histories of malaria and dinoflalgellate algae.

"Under the microscope, Chromera looks like boring little brown balls," says Keeling. "In fact, the ocean is full of little brown and green balls and they're often overlooked in favour of more glamorous organisms, but this one has proved to be more interesting than its flashier cousins."

First described in the journal Nature in 2008, Chromera is found as a symbiont inside corals. Although it has a compartment – called a plastid – that carries out photosynthesis like other algae and plants, Chromera is closely related to apicomplexan parasites – including malaria. This discovery raised the possibility that Chromera may be a "missing link" between the two.

Now Keeling, along with PhD candidate Jan Janouskovec, postdoctoral fellow Ales Horak and collaborators from the Czech Republic, has sequenced the plastid genome of Chromera and found features that were passed down to both apicomplexan and dinoflagellate plastids, linking the two lineages.

"These tiny organisms have a huge impact on humanity in very different ways," says Keeling. "The tool used by dinoflagellates and Chromera to do good – symbiosis with corals – at some point became an infection mechanism for apicomplexans like malaria to infect healthy cells.

"Resolving their evolutionary origins not only settles a long-standing scientific debate but could ultimately provide crucial information for tackling diseases and environmental concerns."

Photographs of Chromera is available at http://www.publicaffairs.ubc.ca/2010/06/01/"little-brown-balls"-tie-malaria-and-algae-to-common-ancestor-ubc-research

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>