Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Birth control' for centrioles

Study uncovers long-sought mechanism that limits centriole duplication, with implications for potential cancer treatments

Like DNA, centrioles need to duplicate only once per cell cycle. Rogers et al. uncover a long-sought mechanism that limits centriole copying, showing that it depends on the timely demolition of a protein that spurs the organelles' replication.

The study will appear in the January 26, 2009 issue of the Journal of Cell Biology and online at

Centrioles start reproducing themselves during G1 or S phase. What prevents the organelles from xeroxing themselves again and again has puzzled researchers for more than a decade. The process could be analogous to the mechanism for controlling DNA replication. There, a licensing factor preps the DNA for duplication. During DNA synthesis, the factor gets tagged with ubiquitin molecules that prompt its destruction, thus preventing another round of copying.

To determine whether a similar mechanism keeps centrioles in check, Rogers et al. blocked Drosophila cells' production of different proteins that combine to form a ubiquitin-adding complex. Loss of one of these proteins, Slimb, allowed cells to fashion extra centrioles, the researchers found.

Slimb's target, the team showed, is the enzyme Plk4, which sports a Slimb-binding motif. Plk4 levels on the centrioles peaked during mitosis, and the enzyme vanished from the organelles by S phase. However, a mutant form of Plk4 that Slimb couldn't latch onto clung to the centrioles throughout the cell cycle and caused their over-duplication.

Plk4 serves as a licensing factor for centriole copying, Rogers et al. suggest. During mitosis, it sets the stage for the next cell division by phosphorylating an unidentified protein (or proteins) that will later instigate centriole duplication. Slimb and its protein partners then ubiquitinate Plk4, so that no enzyme remains on the centrioles by the time they are ready for copying. Thus, the organelles are duplicated once only. Tumor cells often bypass the limit on centriole duplication, and the work suggests that drugs to restrict the organelles' replication might hold promise as cancer treatments.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit

Rogers, G.C., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200808049.

Rita Sullivan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>