Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Birth control' for centrioles

27.01.2009
Study uncovers long-sought mechanism that limits centriole duplication, with implications for potential cancer treatments

Like DNA, centrioles need to duplicate only once per cell cycle. Rogers et al. uncover a long-sought mechanism that limits centriole copying, showing that it depends on the timely demolition of a protein that spurs the organelles' replication.

The study will appear in the January 26, 2009 issue of the Journal of Cell Biology and online at www.jcb.org.

Centrioles start reproducing themselves during G1 or S phase. What prevents the organelles from xeroxing themselves again and again has puzzled researchers for more than a decade. The process could be analogous to the mechanism for controlling DNA replication. There, a licensing factor preps the DNA for duplication. During DNA synthesis, the factor gets tagged with ubiquitin molecules that prompt its destruction, thus preventing another round of copying.

To determine whether a similar mechanism keeps centrioles in check, Rogers et al. blocked Drosophila cells' production of different proteins that combine to form a ubiquitin-adding complex. Loss of one of these proteins, Slimb, allowed cells to fashion extra centrioles, the researchers found.

Slimb's target, the team showed, is the enzyme Plk4, which sports a Slimb-binding motif. Plk4 levels on the centrioles peaked during mitosis, and the enzyme vanished from the organelles by S phase. However, a mutant form of Plk4 that Slimb couldn't latch onto clung to the centrioles throughout the cell cycle and caused their over-duplication.

Plk4 serves as a licensing factor for centriole copying, Rogers et al. suggest. During mitosis, it sets the stage for the next cell division by phosphorylating an unidentified protein (or proteins) that will later instigate centriole duplication. Slimb and its protein partners then ubiquitinate Plk4, so that no enzyme remains on the centrioles by the time they are ready for copying. Thus, the organelles are duplicated once only. Tumor cells often bypass the limit on centriole duplication, and the work suggests that drugs to restrict the organelles' replication might hold promise as cancer treatments.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Rogers, G.C., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200808049.

Rita Sullivan | EurekAlert!
Further information:
http://www.rockefeller.edu
http://www.jcb.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>