Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Big Picture' of Antiviral Defense of Interferon-Induced Genes Revealed

When viruses attack, one molecule more than any other fights back. Interferon triggers the activation of more than 350 genes, and despite the obvious connection, the vast majority have never been tested for antiviral properties.

A team of researchers, led by scientists from Rockefeller University, for the first time has carried out a comprehensive, systematic evaluation of the antiviral activity of interferon-induced factors. The findings, published online today in the journal Nature, are a first step toward unraveling how these naturally occurring molecules work to inhibit viruses.

“We hope this study will open the door to future work on the mechanisms of antiviral molecules,” says first author John Schoggins, a postdoctoral associate in Charles M. Rice’s Laboratory of Virology and Infectious Disease at Rockefeller. “Such mechanistic studies may set the stage for the development of new and much needed drugs to combat a diverse array of viruses that pose significant health threats to people worldwide.”

The researchers were interested in type I interferon, a cellular molecule that is made when a person becomes infected with certain viruses. Type I Interferon is used clinically in the treatment of some viral diseases, such as hepatitis C, and its presence has been shown to significantly limit the severity of certain viral infections.

Schoggins and his colleagues, including researchers from the Aaron Diamond AIDS Research Center and the Howard Hughes Medical Institute, systematically evaluated the majority of common interferon-induced genes, one by one, to determine which of them had antiviral activity against a panel of disease-causing viruses, including the hepatitis C virus, HIV, West Nile virus, the yellow fever virus and chikungunya virus.

The scientists used a cell-based “screen” to measure the ability of each gene to halt the growth of the viruses: One by one, genes were delivered into the cells that were then infected with virus. In cells that had no interferon-induced genes delivered, Schoggins and his team observed normal levels of virus replication. In cells that had interferon-induced genes delivered, they occasionally found “hits” that could significantly impair virus replication.

Overall, Schoggins and his colleagues found that each virus tested was susceptible to inhibition by a unique subset of these interferon-induced genes, with some genes having specific effects on only one virus, and other genes having more broad effects on multiple viruses.

The researchers also showed that two genes in combination were more potent than either gene alone, supporting the long-standing hypothesis that many interferon-induced factors work in a combinatorial fashion. A number of the factors, the researchers found, work by interfering with the process by which viral RNA is translated in protein.

“It’s fascinating that evolution has provided us with an array of hundreds of molecules that can be summoned by the host upon viral infection,” says Schoggins. “Even more interesting is that none of these factors on their own are ‘magic bullets’ that can eradicate the virus. Instead, the cell relies on the cooperative action of numerous factors to effectively shut down the virus.”

Schoggins and his colleagues hope their work will ultimately help inform the design of new antiviral drugs.

“This study is a first step toward unraveling how these previously uncharacterized, naturally occurring interferon-induced factors inhibit viruses,” says Rice, who is the Maurice R. and Corinne P. Greenberg Professor at Rockefeller and scientific director of the Center for the Study of Hepatitis C. “In future studies, we hope to reveal the exact mechanisms by which these molecules suppress viral replication. If this can be done, then we will have a platform for the development of novel drugs that may be beneficial for combating viral infections.”

Joseph Bonner | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>