Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Big Picture' of Antiviral Defense of Interferon-Induced Genes Revealed

12.04.2011
When viruses attack, one molecule more than any other fights back. Interferon triggers the activation of more than 350 genes, and despite the obvious connection, the vast majority have never been tested for antiviral properties.

A team of researchers, led by scientists from Rockefeller University, for the first time has carried out a comprehensive, systematic evaluation of the antiviral activity of interferon-induced factors. The findings, published online today in the journal Nature, are a first step toward unraveling how these naturally occurring molecules work to inhibit viruses.

“We hope this study will open the door to future work on the mechanisms of antiviral molecules,” says first author John Schoggins, a postdoctoral associate in Charles M. Rice’s Laboratory of Virology and Infectious Disease at Rockefeller. “Such mechanistic studies may set the stage for the development of new and much needed drugs to combat a diverse array of viruses that pose significant health threats to people worldwide.”

The researchers were interested in type I interferon, a cellular molecule that is made when a person becomes infected with certain viruses. Type I Interferon is used clinically in the treatment of some viral diseases, such as hepatitis C, and its presence has been shown to significantly limit the severity of certain viral infections.

Schoggins and his colleagues, including researchers from the Aaron Diamond AIDS Research Center and the Howard Hughes Medical Institute, systematically evaluated the majority of common interferon-induced genes, one by one, to determine which of them had antiviral activity against a panel of disease-causing viruses, including the hepatitis C virus, HIV, West Nile virus, the yellow fever virus and chikungunya virus.

The scientists used a cell-based “screen” to measure the ability of each gene to halt the growth of the viruses: One by one, genes were delivered into the cells that were then infected with virus. In cells that had no interferon-induced genes delivered, Schoggins and his team observed normal levels of virus replication. In cells that had interferon-induced genes delivered, they occasionally found “hits” that could significantly impair virus replication.

Overall, Schoggins and his colleagues found that each virus tested was susceptible to inhibition by a unique subset of these interferon-induced genes, with some genes having specific effects on only one virus, and other genes having more broad effects on multiple viruses.

The researchers also showed that two genes in combination were more potent than either gene alone, supporting the long-standing hypothesis that many interferon-induced factors work in a combinatorial fashion. A number of the factors, the researchers found, work by interfering with the process by which viral RNA is translated in protein.

“It’s fascinating that evolution has provided us with an array of hundreds of molecules that can be summoned by the host upon viral infection,” says Schoggins. “Even more interesting is that none of these factors on their own are ‘magic bullets’ that can eradicate the virus. Instead, the cell relies on the cooperative action of numerous factors to effectively shut down the virus.”

Schoggins and his colleagues hope their work will ultimately help inform the design of new antiviral drugs.

“This study is a first step toward unraveling how these previously uncharacterized, naturally occurring interferon-induced factors inhibit viruses,” says Rice, who is the Maurice R. and Corinne P. Greenberg Professor at Rockefeller and scientific director of the Center for the Study of Hepatitis C. “In future studies, we hope to reveal the exact mechanisms by which these molecules suppress viral replication. If this can be done, then we will have a platform for the development of novel drugs that may be beneficial for combating viral infections.”

Joseph Bonner | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>