Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'appetite-suppressing' effect of proteins explained

09.07.2012
Frequently recommended in weight-loss diets, dietary proteins have proven effectiveness thanks to their appetite-suppressing effects.

A team led by Gilles Mithieux, Director of Inserm's Unit 855 "Nutrition and the Brain" in Lyon, has managed to explain the biological mechanisms behind these properties. The researchers describe in detail the chain reactions triggered by digesting proteins, sending a 'satiety' message to the brain long after a meal. Their results, published on 5 July in the Cell review, will make it possible envisage improved care for obese or overweight patients.

The team of researchers from Inserm, CNRS and the Universit¨¦ Clause Bernard Lyon 1 has managed to shed light on the sensation of fullness experienced several hours after a protein-rich meal. This sensation is explained by messages exchanged between the digestive system and the brain, initiated by the dietary proteins that are mainly found in meat, fish, eggs or even some cereal-based products.

In previous studies, researchers proved that consuming dietary proteins triggers glucose synthesis in the intestine, after periods of food assimilation (a function known as gluconeogenesis). The glucose that is released in the blood circulation (portal vein) is detected by the nervous system, which sends an "appetite-suppressing" signal to the brain. Best-known in the liver and kidneys from which it supplies other organs with sugar, gluconeogenesis in the intestine sends an "appetite-suppressing" message after meals, characteristic of the sensation of "fullness".

In this new study, the researchers managed to accurately describe how digesting proteins triggers a double-loop of chain reactions involving the ventral (via the vagus nerve) and dorsal (via the spinal cord) peripheral nervous systems.

The in-depth study of biological mechanisms identified the specific receptors (¦Ì-opioid receptors ) found in the portal vein nervous system, at the outlet of the intestine. These receptors are inhibited by oligo-peptides, produced during protein digestion.

In an initial phase, the oglio-peptides act upon the ¦Ì-opioid receptors, which send a message through the vagus nerve and the spinal chord to areas of the brain specially-designed to receive these messages.

During a second phase, the brain sends a return-message that triggers gluconeogenesis via the intestine. The intestine then sends the "appetite-suppressing" message to areas of the brain that control food intake, such as the hypothalamus

1. Consumption of dietary proteins
2. Protein residues (oligo-peptides) travel to the intestine in the portal vein
3. Recognition of oligo-peptides by ¦Ì-opioid receptors
4. Receipt of peripheral signals
5. Gluconeogenesis induction
6. "Appetite-suppressing" message sent to brain
Identifying these receptors and their role in intestinal gluconeogenesis paves the way to explore new avenues for the treatment of obesity. The challenge is now to determine how to act on the ¦Ì-opioid receptors to control the fullness sensation over long periods. According to Gilles Mithieux, the leading author in the study: "If used too intensely, these receptors may become insensitive. A means of activating them 'moderately' must be found, thus retaining their long-term beneficial effects on controlling food intake".
Sources
¦Ì-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake
Celine Duraffourd1-3,5, Filipe De Vadder1-3,5, Daisy Goncalves1-3, Fabien Delaere1-3, ArmellePenhoat1-3, Bleuenn Brusset1-3, Fabienne Rajas1-3, Dominique Chassard1-4, Adeline Duchampt1-3, Anne Stefanutti1-3, Amandine Gautier-Stein1-3, Gilles Mithieux1-3
1. Institut National de la Sant¨¦ et de la Recherche M¨¦dicale, U 855, Lyon, 69372, France.
2. Universit¨¦ Claude Bernard Lyon 1, Lyon, 69008, France.
3. Universit¨¦ Claude Bernard Lyon 1, Villeurbanne, 69622, France.
4. Hospices Civils de Lyon, HFME, Bron, 69250, France
5. These authors contributed equally to the work.
Cell, 5 July 2012, http://dx.doi.org/10.1016/j.cell.2012.05.039
Research contact
Gilles Mithieux
Director of Inserm Unit 855 "Nutrition and the brain"
Tel: +33 (0)4 78 77 87 88
Mobile: +33 (0)6 07 39 71 92
Email: gilles.mithieux@inserm.fr
Press Contact
Myriam Rebeyrotte
Inserm press office
Tel: +33 (0)1 44 23 60 28
presse@inserm.fr

Inserm Press Office | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>