Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Activating' RNA takes DNA on a loop through time and space

18.02.2013
Links for disease and role in embryonic development

Long segments of RNA— encoded in our DNA but not translated into protein—are key to physically manipulating DNA in order to activate certain genes, say researchers at The Wistar Institute. These non-coding RNA-activators (ncRNA-a) have a crucial role in turning genes on and off during early embryonic development, researchers say, and have also been connected with diseases, including some cancers, in adults.

In an online article of the journal Nature, a team of scientists led by Wistar's Ramin Shiekhattar, Ph.D., detail the mechanism by which long non-coding RNA-activators promote gene expression. They show how these RNA molecules help proteins in the cell to create a loop of DNA in order to open up genes for transcription. Their experiments have also described how particular ncRNA-a molecules are related to FG syndrome, a genetic disease linked to severe neurological and physical deficits. "These ncRNA-activators can activate specific genes by working with large protein complexes, filling in a big piece of the puzzle," said Shiekhattar, Herbert Kean, M.D., Family Professor and senior author of the study. "Our DNA encodes thousands of these ncRNA-activators, each with a role in timing the expression of a specific gene. As we learn more about non-coding RNA, I believe we will have a profoundly better understanding of how our genes function."

Their findings also provide a plausible mechanism of how locations along chromosomes, classically known as "enhancer" elements, can influence the expression ("reading") of genes located 5,000 to 100,000 base pairs ("letters") of DNA away. According to their findings, ncRNA-a molecules bind to large protein complexes to form a loop of DNA, which then opens up the gene to the molecular machinery that transcribes DNA. "There is an abundance of evidence to indicate that enhancers are critical components of transcription during embryonic development and disease process," Shiekhattar said.

"Non-coding RNAs are probably one of the earliest molecules that determine spatial and temporal gene expression in a developing embryo," Shiekhattar said. "These enhancers can help turn genes on and off as a growing embryo would need, but as we have seen in other genetic mechanisms of embryonic development, they can lead to cancer if they are switched on inappropriately in adult cells."

In the classic "central dogma" of biology, chromosomal DNA is transcribed into RNA, which is then translated by the cell into proteins. In recent years, however, scientists have found that not all transcribed RNA molecules become translated into proteins. In fact, studies have shown that large portions of the genome are transcribed into RNA that serve tasks other than functioning as blueprints for proteins. In 2010, the Shiekhattar lab first published the discovery of these ncRNA enhancer molecules in the journal Cell (2010 Oct 1;143(1):46-58), and theorized on their role as "enhancers" of gene expression. Since then, laboratories around the world have published and linked ncRNAs not only to transcriptional enhancers but also to certain diseases, including some cancers.

To discover how such enhancer-like RNAs function, the Shiekhatter laboratory deleted candidate molecules with known roles in activating gene expression, and assessed if they were related to RNA-dependent activation. They found that depleting components of the protein complex known as Mediator specifically and potently diminished the ability of ncRNA-a to start the process of transcribing a gene into RNA. Further, they found that these activating ncRNAs can attach to Mediator at multiple locations within the Mediator protein complex, and Mediator itself can interact with the enhancer element site on DNA that encodes these activating ncRNAs. Their results also determined how mutations in a protein that makes up the Mediator complex, called MED12, drastically diminishes Mediator's ability to associate with activating ncRNAs.

Mutations in the MED12 protein are a marker for FG syndrome (also know as Opitz–Kaveggia syndrome), a rare genetic disorder that leads to abnormalities throughout the body and varying degrees of physical and neurological problems. "This clearly shows how activating ncRNAs can influence disease development, an idea that has been gaining evidence in the scientific literature," Shiekhattar said. To confirm that ncRNA-a works with Mediator to form a loop in DNA, the researchers used a technique called chromosome conformation capture (3C) to gain a better understanding of the three-dimensional structure of chromosomes. Their results show how Mediator gets a foothold of sorts on the portion of DNA that encodes the ncRNA-a, and twists the DNA to form a loop.

"The looping mechanism serves to physically bring together a distant enhancer element with the start site of the targeted gene, allowing Mediator to recruit the proteins responsible for reading the gene to the location," Shiekhattar said. "It is at least one answer to how these classical enhancer elements function while being physically distant from their target genes."

The Shiekhattar laboratory is supported by grants from the National Institutes of Health (P30 CA 010815).

Wistar co-authors include Fan Lai, Ph.D., lead author, and Matteo Cesaroni, Ph.D., postdoctoral fellows in the Shiekhattar laboratory. Co-authors include Ulf Andersson Ørom, Ph.D., Max Planck Institute for Molecular Genetics; Malte Beringer, Ph.D., Center de Regulacio Genomica, Barcelona; Dylan J. Taatjes, Ph.D., University of Colorado; and Gerd A. Blobel, M.D., Ph.D., The Children's Hospital of Philadelphia.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>