Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Activating' RNA takes DNA on a loop through time and space

Links for disease and role in embryonic development

Long segments of RNA— encoded in our DNA but not translated into protein—are key to physically manipulating DNA in order to activate certain genes, say researchers at The Wistar Institute. These non-coding RNA-activators (ncRNA-a) have a crucial role in turning genes on and off during early embryonic development, researchers say, and have also been connected with diseases, including some cancers, in adults.

In an online article of the journal Nature, a team of scientists led by Wistar's Ramin Shiekhattar, Ph.D., detail the mechanism by which long non-coding RNA-activators promote gene expression. They show how these RNA molecules help proteins in the cell to create a loop of DNA in order to open up genes for transcription. Their experiments have also described how particular ncRNA-a molecules are related to FG syndrome, a genetic disease linked to severe neurological and physical deficits. "These ncRNA-activators can activate specific genes by working with large protein complexes, filling in a big piece of the puzzle," said Shiekhattar, Herbert Kean, M.D., Family Professor and senior author of the study. "Our DNA encodes thousands of these ncRNA-activators, each with a role in timing the expression of a specific gene. As we learn more about non-coding RNA, I believe we will have a profoundly better understanding of how our genes function."

Their findings also provide a plausible mechanism of how locations along chromosomes, classically known as "enhancer" elements, can influence the expression ("reading") of genes located 5,000 to 100,000 base pairs ("letters") of DNA away. According to their findings, ncRNA-a molecules bind to large protein complexes to form a loop of DNA, which then opens up the gene to the molecular machinery that transcribes DNA. "There is an abundance of evidence to indicate that enhancers are critical components of transcription during embryonic development and disease process," Shiekhattar said.

"Non-coding RNAs are probably one of the earliest molecules that determine spatial and temporal gene expression in a developing embryo," Shiekhattar said. "These enhancers can help turn genes on and off as a growing embryo would need, but as we have seen in other genetic mechanisms of embryonic development, they can lead to cancer if they are switched on inappropriately in adult cells."

In the classic "central dogma" of biology, chromosomal DNA is transcribed into RNA, which is then translated by the cell into proteins. In recent years, however, scientists have found that not all transcribed RNA molecules become translated into proteins. In fact, studies have shown that large portions of the genome are transcribed into RNA that serve tasks other than functioning as blueprints for proteins. In 2010, the Shiekhattar lab first published the discovery of these ncRNA enhancer molecules in the journal Cell (2010 Oct 1;143(1):46-58), and theorized on their role as "enhancers" of gene expression. Since then, laboratories around the world have published and linked ncRNAs not only to transcriptional enhancers but also to certain diseases, including some cancers.

To discover how such enhancer-like RNAs function, the Shiekhatter laboratory deleted candidate molecules with known roles in activating gene expression, and assessed if they were related to RNA-dependent activation. They found that depleting components of the protein complex known as Mediator specifically and potently diminished the ability of ncRNA-a to start the process of transcribing a gene into RNA. Further, they found that these activating ncRNAs can attach to Mediator at multiple locations within the Mediator protein complex, and Mediator itself can interact with the enhancer element site on DNA that encodes these activating ncRNAs. Their results also determined how mutations in a protein that makes up the Mediator complex, called MED12, drastically diminishes Mediator's ability to associate with activating ncRNAs.

Mutations in the MED12 protein are a marker for FG syndrome (also know as Opitz–Kaveggia syndrome), a rare genetic disorder that leads to abnormalities throughout the body and varying degrees of physical and neurological problems. "This clearly shows how activating ncRNAs can influence disease development, an idea that has been gaining evidence in the scientific literature," Shiekhattar said. To confirm that ncRNA-a works with Mediator to form a loop in DNA, the researchers used a technique called chromosome conformation capture (3C) to gain a better understanding of the three-dimensional structure of chromosomes. Their results show how Mediator gets a foothold of sorts on the portion of DNA that encodes the ncRNA-a, and twists the DNA to form a loop.

"The looping mechanism serves to physically bring together a distant enhancer element with the start site of the targeted gene, allowing Mediator to recruit the proteins responsible for reading the gene to the location," Shiekhattar said. "It is at least one answer to how these classical enhancer elements function while being physically distant from their target genes."

The Shiekhattar laboratory is supported by grants from the National Institutes of Health (P30 CA 010815).

Wistar co-authors include Fan Lai, Ph.D., lead author, and Matteo Cesaroni, Ph.D., postdoctoral fellows in the Shiekhattar laboratory. Co-authors include Ulf Andersson Ørom, Ph.D., Max Planck Institute for Molecular Genetics; Malte Beringer, Ph.D., Center de Regulacio Genomica, Barcelona; Dylan J. Taatjes, Ph.D., University of Colorado; and Gerd A. Blobel, M.D., Ph.D., The Children's Hospital of Philadelphia.

Greg Lester | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>