Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Achilles' heel' in Y chromosome linked to sex disorders

07.09.2009
The unique mechanism behind the evolutionary survival of the human Y chromosome may also be responsible for a range of sex disorders, from failed sperm production to sex reversal to Turner Syndrome.

Roughly six years ago, David Page's lab at Whitehead Institute for Biomedical Research reported the discovery of eight large areas of mirror-imaged genetic sequences, or palindromes, along the Y chromosome.

Because the Y chromosome essentially has no partner with which to swap genes, a process that between ordinary chromosome pairs leads to genetic diversity and the exchange of good genes for damaged ones, it relies on its own palindromes to swap genes with itself. The Y, as it turns out, folds itself in the middle of palindromic regions, thereby pairing identical sequences to allow for potentially beneficial genetic exchange.

At the time, the finding provided explanation for why, despite much-heralded reports to the contrary, the Y chromosome is not doomed to extinction. Now, the Page lab has discovered that the Y's process of self-preservation can randomly go awry, with considerable clinical consequence.

"This is the sequel to the Y chromosome palindrome story," says Page, Whitehead Institute Director and a Howard Hughes Medical Institute investigator.

The latest chapter of the story, whose conclusion is published in the September 4 issue of Cell, began with the intriguing hypothesis that perhaps the Y's process of self-recombination can inadvertently turn the entire chromosome into a palindrome—literally, a mirror-image of itself. The result would be a so-called isodicentric Y chromosome (idicY), an abnormal structure with, as the name implies, two centromeres.

"We began to think seriously about the centromeres and the activity around them. Two centromeres render the chromosome susceptible to damage," says Julian Lange, first author of the Cell paper and a former graduate student in the Page lab. Because of the Y chromosome's well known roles in sex determination and male fertility, Lange began to speculate about the potential clinical impact of the transmission of an idicY during fertilization.

"Because the Y chromosome is not essential to an individual's survival, these isodicentric Ys can persist," says Lange, who, after completing this research at Whitehead, became a postdoctoral fellow at Memorial Sloan-Kettering Cancer Center. "They can be found in the population."

And Lange found them, in the DNA samples of 51 patients screened from a field of nearly 2400 individuals who had come under study over the course of many years because of failed sperm production, structurally abnormal Y chromosomes, or sex reversal. Through sophisticated genetic analysis, it became clear that idicYs were responsible for spermatogenic failure in many of the male patients.

However, 18 of the 51 patients were anatomically female—despite having two copies of the male-determining SRY gene on their idicY chromosomes. Lange and Page began to hypothesize that the feminization they had identified was related to the instability of the idicYs themselves. Suspecting that the level of instability of an idicY increases with the size of the chromosome, they looked for a connection and found something somewhat paradoxical: the larger the Y chromosome, the greater the likelihood of sex reversal.

"We had predicted this correlation, which relates to the overall distance between the centromeres," says Page. "But when we confirmed it with the patient data, we were blown away."

Page believes that this new model for the formation of idicY chromosomes, coupled with the size-instability correlation, suggests a causal link to Turner syndrome, a chromosomal abnormality in girls or women, characterized by the lack of one sex chromosome. Turner syndrome affects an estimated 1 in 2500 females. Page won't yet speculate as to what percentage of Turner syndrome could be caused by this palindrome-to-palindrome recombination, but he does think it's significant.

Written by Matt Fearer

David Page's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous Recombination that Maintains Palindromes"

Cell, September 4, 2009

Julian Lange (1), Helen Skaletsky (1), Saskia K.M. van Daalen (2), Stephanie L. Embry (3), Cindy M. Korver (2), Laura G. Brown (1), Robert D. Oates (4), Sherman Silber (5), Sjoerd Repping (2), and David C. Page (1).

1. Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA

2. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, University of Amsterdam, the Netherlands

3. Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA

4. Department of Urology, Boston University Medical Center, Boston, MA 02118, USA

5. Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO 63107, USA

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>