Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Europe's Topography: The EUROCORES programme TOPO-EUROPE kicks off

21.11.2008
Europe's shape is in a constant change: The Mediterranean basin is shrinking, the Alps are rising and pushing North, and Scandinavia is still rebounding after having been crushed by the weight of a thick and huge ice sheet in the ice ages. But what did Europe look like in the past, what are the processes controlling all these changes and what has the future in store for us? And how does the topography influence the climate of Europe on geological time scales?

The EUROCORES programme TOPO-EUROPE (4-D Topography Evolution in Europe: Uplift, Subsidence and Sea level Change) sets out to answer these questions and many more. So far the largest programme of the European Collaborative Research Scheme (EUROCORES) with 10 Collaborative Research Projects (CRPs) involving 16 National Funding Organisations and an overall budget of approximately 15 million Euros, TOPO-EUROPE is a concerted action to observe and better understand the evolution of the continent in both space and time. The programme kicked off in El Escorial near Madrid in October 2008 during the fourth TOPO-EUROPE International Workshop.

The TOPO-EUROPE programme is part of a European-wide network of the same name. The network was born in the International Lithosphere Programme (ILP) and developed as a regional research coordinating committee for Europe. "EUROCORES TOPO-EUROPE provides an important stimulus for realising the ambitions of the TOPO-EUROPE initiative at large" said Professor Sierd Cloetingh of Vrije Universiteit Amsterdam, President of the ILP and initiator of both the network and the programme. "The idea is to bring different segments of the European community together from the fields of deep Earth and surface processes and for exactly that EUROCORES is a good instrument" continued Cloetingh. TOPO-EUROPE is also the natural successor of EuroMARGINS, a completed EUROCORES programme on continental margins.

A selection of Europe's manifold natural laboratories is under investigation, ranging from orogens like the Pyrenees and the Alps via the Anatolian Plateau to the Scandinavian upland and the Mediterranean. The science in TOPO-EUROPE covers a wide spectrum of topics: inter alia, Earth crust and mantle dynamics, source-to-sink relationships and sediment dynamics, plateau formation and plate-reorganisation.

TOPO-EUROPE is highly interdisciplinary, pooling not only solid Earth experts but also coupling them with climate scientists. One of the programme's Collaborative Research Projects called TOPO-ALPS, for example, attempts to unravel the topographic history of the Alps and its tectonic and climatic drivers. "One of the foci in the current TOPO-EUROPE is to find ways to bring climate in, to determine what role this plays in tectonic and geomorphic problems. This is a frontier of science, so I expect to see more and more of this type of project in the future" explained Professor Sean Willet, the project leader of TOPO-ALPS and a geologist at ETH Zurich, Switzerland.

Another CRP called RESEL-GRACE looks into refining European sea level estimations by combining altimetry, tide gauges and other data with improved glacial isostatic adjustment modelling and tailored regional gravity field models that reflect the redistribution of water masses. "Most important now is to study the impacts of sea level rise and here hardly anything has been done" said Anny Cazenave of Centre National d'Etudes Spatiales (CNES) in Toulouse, France. "The rise, the sedimentology, the tectonics, ocean dynamics and climate need to be combined to develop models for the impacts" continued Cazenave, who is also a lead author of the Nobel prize-winning fourth IPCC report. In RESEL-GRACE, she will identify the most vulnerable ecosystems and economies such as the Nile Delta or the Adriatic and assess the impacts of sea-level rise and concomitant risk of flooding case by case.

There are further applied aspects of the research undertaken in TOPO-EUROPE, which renders the results enormously interesting for the geological surveys of Europe. "A number of issues like geothermal energy, seismic hazards and slope instabilities require a know-how that goes beyond the national borders of Europe" said Cloetingh. New concepts are being developed but need to be validated at the same time with an array of different types of data in order to reach a better geo-prediction that could eventually save lives and protect property.

TOPO-EUROPE creates also new research opportunities by opening up 50 to 60 positions for young researchers. "If you don't offer opportunities, young people will not go into our field as they will have the impression that everything has been solved, that the field is classical" explained Cloetingh. With programmes like TOPO-EUROPE and by further modernising the science, a pool of researchers is created that is able to fill up the positions to become available in the years to come with the generation change. The interest in the Earth sciences is constantly increasing and statistics in terms of student, PhD and post-doc populations are promising. Even the proportion of women has reached 50 percent among students, which is a great success in a formerly extremely male-dominated discipline.

Next to the collaborations within the EUROCORES programme, a plentitude of synergies is envisaged since the programme is not a stand-alone. The TOPO-IBERIA Research Initiative and the EU EPOS-ESFRI programme will be important partners, and TOPO-EUROPE hopes to team up with the TOPO- Central Asia programme. The TOPO-EUROPE network is part of the ILP research agenda and hence paving the way for a global partnership in the Earth sciences.

Angela Michiko Hama | alfa
Further information:
http://www.esf.org

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>