Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Research Explores Why Ancient Civilization Was ‘Livin’ on the Edge’

29.03.2011
The research, an ongoing project involving a multidisciplinary team of University of Cincinnati researchers, will be presented at the annual meeting of the Society for American Archaeology.

University of Cincinnati research is investigating why a highly sophisticated civilization decided to build large, bustling cities next to what is essentially swampland.

The research by UC Geography Professor Nicholas Dunning, a three-year, interdisciplinary project including David Lentz, professor of biological sciences, and Vern Scarborough, professor of anthropology, will be presented April 1 at the annual meeting of the Society for American Archaeology in Sacramento, Calif. This annual meeting draws more than 3,000 researchers from around the world to present research covering a wide range of topics and time periods.

Dunning’s research zeroes in on why larger and successful Maya communities were located along the edges of the massive wetlands of Tikal.

Supported by the National Science Foundation and the Wenner Gren Foundation, the UC researchers are exploring different aspects of the ancient Maya in one of the premier cities of the ancient Maya world, Tikal, located in northern Guatemala. It’s a region where architecture – pyramids, palaces and temples dating as far back as the fourth century B.C.– are still standing in tribute to this ancient, sophisticated, Native American society that largely disintegrated around 900 A.D. Their demise has remained a mystery for centuries.

Located near the southwestern margin of the Bajo de Sante Fe, it’s also a challenging region to conduct research. “It doesn’t take a lot of rain to make it impossible to get in and out of the bajos. They’re seasonal swamps. The mud gets deep very quickly,” explains Dunning.

But the researchers have found that when the Maya started building their cities adjacent to these wetlands, they were different environments than what exist now, Dunning says. Portions of the area where UC researchers are working once may have been a shallow lake and perennial wetlands from which early populations extracted organic, peat moss-like soil to help sustain nearby fields where the Maya were primarily farming maize. Over the years, the farming-on-the-edge practice on sloping land led to soil erosion that resulted in creating aprons of deep, rich soil along the interface between the uplands and the swamps.

“We have good evidence from Tikal and other sites in this region that these areas became the focal point where agriculture occurred in the Classic Period, where these anthropogenic soils were created at the base of the slopes,” Dunning says.

In regard to the edge farming, the researchers studied the soil and found significant amounts of pollen, which would indicate a significant amount of maize was produced. In addition, the organic matter produced from the corn was reflected in the soil’s composition.

The UC research was a joint project with Instituto de Antropología e Historía (de Guatemala) – IDEAH – under the Guatemalan government. Lentz and Scarborough will also be presenting findings related to their fields – regarding the Maya’s advances in forestry and water management – at the conference.

Dunning has been conducting research related to the geography of Guatemala since 1991. “One of the fascinating aspects of archaeology is that in reconstructing entire civilizations, one can’t understand how an ancient civilization worked from just one perspective, so it naturally lends itself to interdisciplinary work,” he says.

Additional authors and researchers on Dunning’s presentation are Robert Griffin, Penn State University, John G. Jones, Washington State University, Christopher Carr, a UC doctoral student in the geography program and Kevin Magee, who recently completed his PhD in the UC geography program.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu
http://www.uc.edu/news/NR.aspx?id=13335

Further reports about: Ancient African Exodus Archaeology Guatemala Maya ancient civilization

More articles from Interdisciplinary Research:

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

nachricht Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens
19.10.2017 | University of Illinois College of Engineering

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>