Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Research Explores Why Ancient Civilization Was ‘Livin’ on the Edge’

The research, an ongoing project involving a multidisciplinary team of University of Cincinnati researchers, will be presented at the annual meeting of the Society for American Archaeology.

University of Cincinnati research is investigating why a highly sophisticated civilization decided to build large, bustling cities next to what is essentially swampland.

The research by UC Geography Professor Nicholas Dunning, a three-year, interdisciplinary project including David Lentz, professor of biological sciences, and Vern Scarborough, professor of anthropology, will be presented April 1 at the annual meeting of the Society for American Archaeology in Sacramento, Calif. This annual meeting draws more than 3,000 researchers from around the world to present research covering a wide range of topics and time periods.

Dunning’s research zeroes in on why larger and successful Maya communities were located along the edges of the massive wetlands of Tikal.

Supported by the National Science Foundation and the Wenner Gren Foundation, the UC researchers are exploring different aspects of the ancient Maya in one of the premier cities of the ancient Maya world, Tikal, located in northern Guatemala. It’s a region where architecture – pyramids, palaces and temples dating as far back as the fourth century B.C.– are still standing in tribute to this ancient, sophisticated, Native American society that largely disintegrated around 900 A.D. Their demise has remained a mystery for centuries.

Located near the southwestern margin of the Bajo de Sante Fe, it’s also a challenging region to conduct research. “It doesn’t take a lot of rain to make it impossible to get in and out of the bajos. They’re seasonal swamps. The mud gets deep very quickly,” explains Dunning.

But the researchers have found that when the Maya started building their cities adjacent to these wetlands, they were different environments than what exist now, Dunning says. Portions of the area where UC researchers are working once may have been a shallow lake and perennial wetlands from which early populations extracted organic, peat moss-like soil to help sustain nearby fields where the Maya were primarily farming maize. Over the years, the farming-on-the-edge practice on sloping land led to soil erosion that resulted in creating aprons of deep, rich soil along the interface between the uplands and the swamps.

“We have good evidence from Tikal and other sites in this region that these areas became the focal point where agriculture occurred in the Classic Period, where these anthropogenic soils were created at the base of the slopes,” Dunning says.

In regard to the edge farming, the researchers studied the soil and found significant amounts of pollen, which would indicate a significant amount of maize was produced. In addition, the organic matter produced from the corn was reflected in the soil’s composition.

The UC research was a joint project with Instituto de Antropología e Historía (de Guatemala) – IDEAH – under the Guatemalan government. Lentz and Scarborough will also be presenting findings related to their fields – regarding the Maya’s advances in forestry and water management – at the conference.

Dunning has been conducting research related to the geography of Guatemala since 1991. “One of the fascinating aspects of archaeology is that in reconstructing entire civilizations, one can’t understand how an ancient civilization worked from just one perspective, so it naturally lends itself to interdisciplinary work,” he says.

Additional authors and researchers on Dunning’s presentation are Robert Griffin, Penn State University, John G. Jones, Washington State University, Christopher Carr, a UC doctoral student in the geography program and Kevin Magee, who recently completed his PhD in the UC geography program.

Dawn Fuller | EurekAlert!
Further information:

Further reports about: Ancient African Exodus Archaeology Guatemala Maya ancient civilization

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>