Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching Robots to Move Like Humans

08.03.2011
When people communicate, the way they move has as much to do with what they’re saying as the words that come out of their mouths. But what about when robots communicate with people? How can robots use non-verbal communication to interact more naturally with humans?

Researchers at the Georgia Institute of Technology found that when robots move in a more human-like fashion, with one movement leading into the next, that people can not only better recognize what the robot is doing, but they can also better mimic it themselves. The research is being presented today at the Human-Robot Interaction conference in Lausanne, Switzerland.

“It’s important to build robots that meet people’s social expectations because we think that will make it easier for people to understand how to approach them and how to interact with them,” said Andrea Thomaz, assistant professor in the School of Interactive Computing at Georgia Tech’s College of Computing.

Thomaz, along with Ph.D. student Michael Gielniak, conducted a study in which they asked how easily people can recognize what a robot is doing by watching its movements.

“Robot motion is typically characterized by jerky movements, with a lot of stops and starts, unlike human movement which is more fluid and dynamic,” said Gielniak. “We want humans to interact with robots just as they might interact with other humans, so that it’s intuitive.”

Using a series of human movements taken in a motion-capture lab, they programmed the robot, Simon, to perform the movements. They also optimized that motion to allow for more joints to move at the same time and for the movements to flow into each other in an attempt to be more human-like. They asked their human subjects to watch Simon and identify the movements he made.

“When the motion was more human-like, human beings were able to watch the motion and perceive what the robot was doing more easily,” said Gielniak.

In addition, they tested the algorithm they used to create the optimized motion by asking humans to perform the movements they saw Simon making. The thinking was that if the movement created by the algorithm was indeed more human-like, then the subjects should have an easier time mimicking it. Turns out they did.

“We found that this optimization we do to create more life-like motion allows people to identify the motion more easily and mimic it more exactly,” said Thomaz.

The research that Thomaz and Gielniak are doing is part of a theme in getting robots to move more like humans move. In future work, the pair plan on looking at how to get Simon to perform the same movements in various ways.

“So, instead of having the robot move the exact same way every single time you want the robot to perform a similar action like waving, you always want to see a different wave so that people forget that this is a robot they’re interacting with,” said Gielniak.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: Pervasive Computing Robots Teaching algorithm human movement humans

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>