Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching Robots to Move Like Humans

08.03.2011
When people communicate, the way they move has as much to do with what they’re saying as the words that come out of their mouths. But what about when robots communicate with people? How can robots use non-verbal communication to interact more naturally with humans?

Researchers at the Georgia Institute of Technology found that when robots move in a more human-like fashion, with one movement leading into the next, that people can not only better recognize what the robot is doing, but they can also better mimic it themselves. The research is being presented today at the Human-Robot Interaction conference in Lausanne, Switzerland.

“It’s important to build robots that meet people’s social expectations because we think that will make it easier for people to understand how to approach them and how to interact with them,” said Andrea Thomaz, assistant professor in the School of Interactive Computing at Georgia Tech’s College of Computing.

Thomaz, along with Ph.D. student Michael Gielniak, conducted a study in which they asked how easily people can recognize what a robot is doing by watching its movements.

“Robot motion is typically characterized by jerky movements, with a lot of stops and starts, unlike human movement which is more fluid and dynamic,” said Gielniak. “We want humans to interact with robots just as they might interact with other humans, so that it’s intuitive.”

Using a series of human movements taken in a motion-capture lab, they programmed the robot, Simon, to perform the movements. They also optimized that motion to allow for more joints to move at the same time and for the movements to flow into each other in an attempt to be more human-like. They asked their human subjects to watch Simon and identify the movements he made.

“When the motion was more human-like, human beings were able to watch the motion and perceive what the robot was doing more easily,” said Gielniak.

In addition, they tested the algorithm they used to create the optimized motion by asking humans to perform the movements they saw Simon making. The thinking was that if the movement created by the algorithm was indeed more human-like, then the subjects should have an easier time mimicking it. Turns out they did.

“We found that this optimization we do to create more life-like motion allows people to identify the motion more easily and mimic it more exactly,” said Thomaz.

The research that Thomaz and Gielniak are doing is part of a theme in getting robots to move more like humans move. In future work, the pair plan on looking at how to get Simon to perform the same movements in various ways.

“So, instead of having the robot move the exact same way every single time you want the robot to perform a similar action like waving, you always want to see a different wave so that people forget that this is a robot they’re interacting with,” said Gielniak.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: Pervasive Computing Robots Teaching algorithm human movement humans

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>