Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming pool game inspires robot detection

20.03.2009
Scientists have used a popular kids swimming pool game to guide their development of a system for controlling moving robots that can autonomously detect and capture other moving targets.

Engineers from Duke University and the University of New Mexico have used the simple pursuit-evasion game "Marco Polo" to solve a complex problem -- namely, how to create a system that allows robots to not only "sense" a moving target, but intercept it.

Such systems have broad applications, ranging from security systems to track unwanted intruders like enemy ships or burglars, to systems that create radiation or environmental hazard maps, or even track endangered species.

The main challenge facing researchers is developing the artificial intelligence to control the robots and their sensors without direct human guidance.

The goal of the game "Marco Polo" is for the person who is "it" to tag another person, who then becomes the new pursuer. However, pursuers must keep their eyes closed. At any time, the pursuer can call out "Marco," and everyone else must respond by saying "Polo." In this way, the pursuer can gradually estimate where the targets are in the pool and where they might go.

"Games give us a good way of making these highly complex problems easier to visualize," said Silvia Ferrari, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. Ferrari and colleague Rafael Fierro, associate professor of electrical engineering at the University of New Mexico, published the results from their latest experiments online in the Journal on Control and Optimization, a publication of the Society for Industrial and Applied Mathematics.

"Just as in 'Marco Polo,' we needed to create a way that permits mobile robots to detect other moving objects and make predictions about where the targets might go," Ferrari said. "When done efficiently, the mobile sensor switches from pursuit mode to capture mode in the shortest amount of time."

Ferrari's laboratory had already developed a similar type of algorithm, known as cell decomposition, in which space is broken down into a series of distinct cells. Past experiments allowed a robot to move through space without colliding with stationary obstacles.

The latest experiments included not only robots equipped with camera sensors, but also stationary camera sensors, which allowed for "coverage" of all the cells within the space.

"The idea is that multiple sensors are deployed in the space to cooperatively detect moving targets within that space," Fierro said. "As the sensor makes more detections, it is better able to predict the likely path of the intruder. The ultimate path taken by the robot sensor is one that maximizes the probability of detection and minimizes the distance needed to capture the target."

While the security and military applications of this type of detection system are obvious, Fierro also points out that the new algorithms can be used in other ways to detect targets that aren't necessarily intruders.

"Targets could be completely different things, like mines or explosives, or chemical or radiation leaks," Fierro said. "The robots can use their sensors to keep track of the detected locations and build a 'map' to let people know where to go or not to go."

The algorithms could also be used to help explain natural phenomena, such as the behaviors of members of a wolf pack as they chase and capture their prey.

The latest experiments were conducted at the University of New Mexico and involved intruders moving in straight lines at a constant speed.

"We are now developing algorithms that will more closely mimic the real world by giving intruders the ability to take evasive actions," Ferrari said. "The other main issue is to ensure that all the different mobile sensors can communicate with each other at all times and coordinate their activities based on that communication."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>