Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming pool game inspires robot detection

20.03.2009
Scientists have used a popular kids swimming pool game to guide their development of a system for controlling moving robots that can autonomously detect and capture other moving targets.

Engineers from Duke University and the University of New Mexico have used the simple pursuit-evasion game "Marco Polo" to solve a complex problem -- namely, how to create a system that allows robots to not only "sense" a moving target, but intercept it.

Such systems have broad applications, ranging from security systems to track unwanted intruders like enemy ships or burglars, to systems that create radiation or environmental hazard maps, or even track endangered species.

The main challenge facing researchers is developing the artificial intelligence to control the robots and their sensors without direct human guidance.

The goal of the game "Marco Polo" is for the person who is "it" to tag another person, who then becomes the new pursuer. However, pursuers must keep their eyes closed. At any time, the pursuer can call out "Marco," and everyone else must respond by saying "Polo." In this way, the pursuer can gradually estimate where the targets are in the pool and where they might go.

"Games give us a good way of making these highly complex problems easier to visualize," said Silvia Ferrari, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. Ferrari and colleague Rafael Fierro, associate professor of electrical engineering at the University of New Mexico, published the results from their latest experiments online in the Journal on Control and Optimization, a publication of the Society for Industrial and Applied Mathematics.

"Just as in 'Marco Polo,' we needed to create a way that permits mobile robots to detect other moving objects and make predictions about where the targets might go," Ferrari said. "When done efficiently, the mobile sensor switches from pursuit mode to capture mode in the shortest amount of time."

Ferrari's laboratory had already developed a similar type of algorithm, known as cell decomposition, in which space is broken down into a series of distinct cells. Past experiments allowed a robot to move through space without colliding with stationary obstacles.

The latest experiments included not only robots equipped with camera sensors, but also stationary camera sensors, which allowed for "coverage" of all the cells within the space.

"The idea is that multiple sensors are deployed in the space to cooperatively detect moving targets within that space," Fierro said. "As the sensor makes more detections, it is better able to predict the likely path of the intruder. The ultimate path taken by the robot sensor is one that maximizes the probability of detection and minimizes the distance needed to capture the target."

While the security and military applications of this type of detection system are obvious, Fierro also points out that the new algorithms can be used in other ways to detect targets that aren't necessarily intruders.

"Targets could be completely different things, like mines or explosives, or chemical or radiation leaks," Fierro said. "The robots can use their sensors to keep track of the detected locations and build a 'map' to let people know where to go or not to go."

The algorithms could also be used to help explain natural phenomena, such as the behaviors of members of a wolf pack as they chase and capture their prey.

The latest experiments were conducted at the University of New Mexico and involved intruders moving in straight lines at a constant speed.

"We are now developing algorithms that will more closely mimic the real world by giving intruders the ability to take evasive actions," Ferrari said. "The other main issue is to ensure that all the different mobile sensors can communicate with each other at all times and coordinate their activities based on that communication."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>