Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start of SPICE brings new ways to accelerate interdisciplinary spin research in the 21st century

22.04.2015

Kick-off of the Spin Phenomena Interdisciplinary Center (SPICE) at Johannes Gutenberg University Mainz

Johannes Gutenberg University Mainz (JGU) today officially opened its new Spin Phenomena Interdisciplinary Center (SPICE), which will facilitate interactions between the many diverse fields that study spin-related phenomena – at a level that each field could not achieve on its own.

Thereby, SPICE addresses one of the grand challenges of the new century: to shorten the time of discovery of novel phenomena and the creation of new multi-functional advanced materials that need the knowledge of more than one field to emerge. SPICE is sponsored by the Alexander von Humboldt Foundation and the German federal state of Rhineland-Palatinate.

The new research center at Mainz University focuses on spin phenomena because they are present in many areas of materials and fundamental science. The spin can be explained as the rotation of the electron around its own axis generating a magnetic field.

This is the basis of today’s information storage technology and has provided new design possibilities in many fields of application: from faster electronics to new high-capacity data storage concepts up to new ways to create advanced materials with directly designed properties.

Because the spin belongs to the fundamental basics of quantum mechanics, which rules the microscopic world, it fascinates not only both experimentally and theoretically working physicists and chemists, but also mathematicians, computer scientists, and engineers.

"The idea of SPICE is to bring together researchers from different disciplines to tackle the hardest scientific challenges at a level that each field could not achieve on its own," said Professor Jairo Sinova, Managing Director of SPICE and holder of an Alexander von Humboldt Professorship at the Institute of Physics at Johannes Gutenberg University Mainz.

"The best scientific learning and discovery occurs outside one’s comfort zone. At SPICE we want to create a challenging and inspiring atmosphere that encourages our scientists to take unconventional perspectives and to look beyond the current frontiers of spin-related science." Sinova imagines a fruitful exchange not only with natural scientists: "Even literary scholars or artists dealing with the issue are welcome partners."

SPICE offers different formats for interdisciplinary exchange. In workshops, researchers and scholars of different fields will share their latest developments and intermix this with high-level tutorials to inform each other; a young research leader workshop puts the next generation of top researchers in the lead as keynote speakers and leaders of workshops. SPICE also offers visiting scholars the possibility to do their research in Mainz for a few days, weeks, or even months.

"Mainz University offers a particularly fertile environment for SPICE since it already is a prominent place for spin-related research", emphasized the President of Johannes Gutenberg University Mainz, Professor Georg Krausch. “Therefore, we thank the Alexander von Humboldt Foundation and the State of Rhineland-Palatinate for their commitment and we are looking forward to lively interdisciplinary events and fruitful exchange at the highest level.”

In addition to the Interdisciplinary Spintronics Research Group (INSPIRE) under the direction of Professor Jairo Sinova, other groups at Mainz University – including the Graduate School of Excellence "Materials Science in Mainz" (MAINZ), the Center for Innovative Emerging Materials (CINEMA), and the Mainz Institute for Theoretical Physics (MITP) – also seek out this promising new research area.

Several scientists have already experienced SPICE in this excellent environment. The Israeli physicists Ora Entin-Wohlman and Amnon Aharony spent two weeks at Mainz University. And the French physicist Thierry Valet, known for his contributions to the understanding of the giant magneto-resistance effect and the Valet-Fert-theory, visited INSPIRE and SPICE in February 2015.

For the coming months a variety of workshops are planned. In the second half of May, for example, 32 speakers and more than 40 participants from around the world will explore "Computational Quantum Magnetism." In August 2015, the inaugural "Young Leaders Group Research Workshop" will take place at Kloster Johannisberg for the first week and will then continue at Mainz University. The top young researchers involved will focus their attention on “Frontiers with Strongly Correlated and Topological Mesoscopic Systems.”

SPICE meetings will take place at various venues. One of them is Castle Waldthausen, located near Mainz University and offering meeting rooms and accommodations in a very special atmosphere. “Besides providing an excellent scientific environment, we also want to offer insight into the cultural characteristics of the region,” emphasized Sinova.

Weitere Informationen:

http://www.spice.uni-mainz.de/ - Spin Phenomena Interdisciplinary Center (SPICE) ;
http://www.uni-mainz.de/presse/16992_ENG_HTML.php - press release "Jairo Sinova receives ERC funding to develop new spintronic concepts" ;
http://www.uni-mainz.de/presse/16762_ENG_HTML.php - press release "Mainz University receives approval for an Alexander von Humboldt Professorship in Physics"

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>