Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start of SPICE brings new ways to accelerate interdisciplinary spin research in the 21st century

22.04.2015

Kick-off of the Spin Phenomena Interdisciplinary Center (SPICE) at Johannes Gutenberg University Mainz

Johannes Gutenberg University Mainz (JGU) today officially opened its new Spin Phenomena Interdisciplinary Center (SPICE), which will facilitate interactions between the many diverse fields that study spin-related phenomena – at a level that each field could not achieve on its own.

Thereby, SPICE addresses one of the grand challenges of the new century: to shorten the time of discovery of novel phenomena and the creation of new multi-functional advanced materials that need the knowledge of more than one field to emerge. SPICE is sponsored by the Alexander von Humboldt Foundation and the German federal state of Rhineland-Palatinate.

The new research center at Mainz University focuses on spin phenomena because they are present in many areas of materials and fundamental science. The spin can be explained as the rotation of the electron around its own axis generating a magnetic field.

This is the basis of today’s information storage technology and has provided new design possibilities in many fields of application: from faster electronics to new high-capacity data storage concepts up to new ways to create advanced materials with directly designed properties.

Because the spin belongs to the fundamental basics of quantum mechanics, which rules the microscopic world, it fascinates not only both experimentally and theoretically working physicists and chemists, but also mathematicians, computer scientists, and engineers.

"The idea of SPICE is to bring together researchers from different disciplines to tackle the hardest scientific challenges at a level that each field could not achieve on its own," said Professor Jairo Sinova, Managing Director of SPICE and holder of an Alexander von Humboldt Professorship at the Institute of Physics at Johannes Gutenberg University Mainz.

"The best scientific learning and discovery occurs outside one’s comfort zone. At SPICE we want to create a challenging and inspiring atmosphere that encourages our scientists to take unconventional perspectives and to look beyond the current frontiers of spin-related science." Sinova imagines a fruitful exchange not only with natural scientists: "Even literary scholars or artists dealing with the issue are welcome partners."

SPICE offers different formats for interdisciplinary exchange. In workshops, researchers and scholars of different fields will share their latest developments and intermix this with high-level tutorials to inform each other; a young research leader workshop puts the next generation of top researchers in the lead as keynote speakers and leaders of workshops. SPICE also offers visiting scholars the possibility to do their research in Mainz for a few days, weeks, or even months.

"Mainz University offers a particularly fertile environment for SPICE since it already is a prominent place for spin-related research", emphasized the President of Johannes Gutenberg University Mainz, Professor Georg Krausch. “Therefore, we thank the Alexander von Humboldt Foundation and the State of Rhineland-Palatinate for their commitment and we are looking forward to lively interdisciplinary events and fruitful exchange at the highest level.”

In addition to the Interdisciplinary Spintronics Research Group (INSPIRE) under the direction of Professor Jairo Sinova, other groups at Mainz University – including the Graduate School of Excellence "Materials Science in Mainz" (MAINZ), the Center for Innovative Emerging Materials (CINEMA), and the Mainz Institute for Theoretical Physics (MITP) – also seek out this promising new research area.

Several scientists have already experienced SPICE in this excellent environment. The Israeli physicists Ora Entin-Wohlman and Amnon Aharony spent two weeks at Mainz University. And the French physicist Thierry Valet, known for his contributions to the understanding of the giant magneto-resistance effect and the Valet-Fert-theory, visited INSPIRE and SPICE in February 2015.

For the coming months a variety of workshops are planned. In the second half of May, for example, 32 speakers and more than 40 participants from around the world will explore "Computational Quantum Magnetism." In August 2015, the inaugural "Young Leaders Group Research Workshop" will take place at Kloster Johannisberg for the first week and will then continue at Mainz University. The top young researchers involved will focus their attention on “Frontiers with Strongly Correlated and Topological Mesoscopic Systems.”

SPICE meetings will take place at various venues. One of them is Castle Waldthausen, located near Mainz University and offering meeting rooms and accommodations in a very special atmosphere. “Besides providing an excellent scientific environment, we also want to offer insight into the cultural characteristics of the region,” emphasized Sinova.

Weitere Informationen:

http://www.spice.uni-mainz.de/ - Spin Phenomena Interdisciplinary Center (SPICE) ;
http://www.uni-mainz.de/presse/16992_ENG_HTML.php - press release "Jairo Sinova receives ERC funding to develop new spintronic concepts" ;
http://www.uni-mainz.de/presse/16762_ENG_HTML.php - press release "Mainz University receives approval for an Alexander von Humboldt Professorship in Physics"

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>