Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start of SPICE brings new ways to accelerate interdisciplinary spin research in the 21st century

22.04.2015

Kick-off of the Spin Phenomena Interdisciplinary Center (SPICE) at Johannes Gutenberg University Mainz

Johannes Gutenberg University Mainz (JGU) today officially opened its new Spin Phenomena Interdisciplinary Center (SPICE), which will facilitate interactions between the many diverse fields that study spin-related phenomena – at a level that each field could not achieve on its own.

Thereby, SPICE addresses one of the grand challenges of the new century: to shorten the time of discovery of novel phenomena and the creation of new multi-functional advanced materials that need the knowledge of more than one field to emerge. SPICE is sponsored by the Alexander von Humboldt Foundation and the German federal state of Rhineland-Palatinate.

The new research center at Mainz University focuses on spin phenomena because they are present in many areas of materials and fundamental science. The spin can be explained as the rotation of the electron around its own axis generating a magnetic field.

This is the basis of today’s information storage technology and has provided new design possibilities in many fields of application: from faster electronics to new high-capacity data storage concepts up to new ways to create advanced materials with directly designed properties.

Because the spin belongs to the fundamental basics of quantum mechanics, which rules the microscopic world, it fascinates not only both experimentally and theoretically working physicists and chemists, but also mathematicians, computer scientists, and engineers.

"The idea of SPICE is to bring together researchers from different disciplines to tackle the hardest scientific challenges at a level that each field could not achieve on its own," said Professor Jairo Sinova, Managing Director of SPICE and holder of an Alexander von Humboldt Professorship at the Institute of Physics at Johannes Gutenberg University Mainz.

"The best scientific learning and discovery occurs outside one’s comfort zone. At SPICE we want to create a challenging and inspiring atmosphere that encourages our scientists to take unconventional perspectives and to look beyond the current frontiers of spin-related science." Sinova imagines a fruitful exchange not only with natural scientists: "Even literary scholars or artists dealing with the issue are welcome partners."

SPICE offers different formats for interdisciplinary exchange. In workshops, researchers and scholars of different fields will share their latest developments and intermix this with high-level tutorials to inform each other; a young research leader workshop puts the next generation of top researchers in the lead as keynote speakers and leaders of workshops. SPICE also offers visiting scholars the possibility to do their research in Mainz for a few days, weeks, or even months.

"Mainz University offers a particularly fertile environment for SPICE since it already is a prominent place for spin-related research", emphasized the President of Johannes Gutenberg University Mainz, Professor Georg Krausch. “Therefore, we thank the Alexander von Humboldt Foundation and the State of Rhineland-Palatinate for their commitment and we are looking forward to lively interdisciplinary events and fruitful exchange at the highest level.”

In addition to the Interdisciplinary Spintronics Research Group (INSPIRE) under the direction of Professor Jairo Sinova, other groups at Mainz University – including the Graduate School of Excellence "Materials Science in Mainz" (MAINZ), the Center for Innovative Emerging Materials (CINEMA), and the Mainz Institute for Theoretical Physics (MITP) – also seek out this promising new research area.

Several scientists have already experienced SPICE in this excellent environment. The Israeli physicists Ora Entin-Wohlman and Amnon Aharony spent two weeks at Mainz University. And the French physicist Thierry Valet, known for his contributions to the understanding of the giant magneto-resistance effect and the Valet-Fert-theory, visited INSPIRE and SPICE in February 2015.

For the coming months a variety of workshops are planned. In the second half of May, for example, 32 speakers and more than 40 participants from around the world will explore "Computational Quantum Magnetism." In August 2015, the inaugural "Young Leaders Group Research Workshop" will take place at Kloster Johannisberg for the first week and will then continue at Mainz University. The top young researchers involved will focus their attention on “Frontiers with Strongly Correlated and Topological Mesoscopic Systems.”

SPICE meetings will take place at various venues. One of them is Castle Waldthausen, located near Mainz University and offering meeting rooms and accommodations in a very special atmosphere. “Besides providing an excellent scientific environment, we also want to offer insight into the cultural characteristics of the region,” emphasized Sinova.

Weitere Informationen:

http://www.spice.uni-mainz.de/ - Spin Phenomena Interdisciplinary Center (SPICE) ;
http://www.uni-mainz.de/presse/16992_ENG_HTML.php - press release "Jairo Sinova receives ERC funding to develop new spintronic concepts" ;
http://www.uni-mainz.de/presse/16762_ENG_HTML.php - press release "Mainz University receives approval for an Alexander von Humboldt Professorship in Physics"

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>