Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start of SPICE brings new ways to accelerate interdisciplinary spin research in the 21st century

22.04.2015

Kick-off of the Spin Phenomena Interdisciplinary Center (SPICE) at Johannes Gutenberg University Mainz

Johannes Gutenberg University Mainz (JGU) today officially opened its new Spin Phenomena Interdisciplinary Center (SPICE), which will facilitate interactions between the many diverse fields that study spin-related phenomena – at a level that each field could not achieve on its own.

Thereby, SPICE addresses one of the grand challenges of the new century: to shorten the time of discovery of novel phenomena and the creation of new multi-functional advanced materials that need the knowledge of more than one field to emerge. SPICE is sponsored by the Alexander von Humboldt Foundation and the German federal state of Rhineland-Palatinate.

The new research center at Mainz University focuses on spin phenomena because they are present in many areas of materials and fundamental science. The spin can be explained as the rotation of the electron around its own axis generating a magnetic field.

This is the basis of today’s information storage technology and has provided new design possibilities in many fields of application: from faster electronics to new high-capacity data storage concepts up to new ways to create advanced materials with directly designed properties.

Because the spin belongs to the fundamental basics of quantum mechanics, which rules the microscopic world, it fascinates not only both experimentally and theoretically working physicists and chemists, but also mathematicians, computer scientists, and engineers.

"The idea of SPICE is to bring together researchers from different disciplines to tackle the hardest scientific challenges at a level that each field could not achieve on its own," said Professor Jairo Sinova, Managing Director of SPICE and holder of an Alexander von Humboldt Professorship at the Institute of Physics at Johannes Gutenberg University Mainz.

"The best scientific learning and discovery occurs outside one’s comfort zone. At SPICE we want to create a challenging and inspiring atmosphere that encourages our scientists to take unconventional perspectives and to look beyond the current frontiers of spin-related science." Sinova imagines a fruitful exchange not only with natural scientists: "Even literary scholars or artists dealing with the issue are welcome partners."

SPICE offers different formats for interdisciplinary exchange. In workshops, researchers and scholars of different fields will share their latest developments and intermix this with high-level tutorials to inform each other; a young research leader workshop puts the next generation of top researchers in the lead as keynote speakers and leaders of workshops. SPICE also offers visiting scholars the possibility to do their research in Mainz for a few days, weeks, or even months.

"Mainz University offers a particularly fertile environment for SPICE since it already is a prominent place for spin-related research", emphasized the President of Johannes Gutenberg University Mainz, Professor Georg Krausch. “Therefore, we thank the Alexander von Humboldt Foundation and the State of Rhineland-Palatinate for their commitment and we are looking forward to lively interdisciplinary events and fruitful exchange at the highest level.”

In addition to the Interdisciplinary Spintronics Research Group (INSPIRE) under the direction of Professor Jairo Sinova, other groups at Mainz University – including the Graduate School of Excellence "Materials Science in Mainz" (MAINZ), the Center for Innovative Emerging Materials (CINEMA), and the Mainz Institute for Theoretical Physics (MITP) – also seek out this promising new research area.

Several scientists have already experienced SPICE in this excellent environment. The Israeli physicists Ora Entin-Wohlman and Amnon Aharony spent two weeks at Mainz University. And the French physicist Thierry Valet, known for his contributions to the understanding of the giant magneto-resistance effect and the Valet-Fert-theory, visited INSPIRE and SPICE in February 2015.

For the coming months a variety of workshops are planned. In the second half of May, for example, 32 speakers and more than 40 participants from around the world will explore "Computational Quantum Magnetism." In August 2015, the inaugural "Young Leaders Group Research Workshop" will take place at Kloster Johannisberg for the first week and will then continue at Mainz University. The top young researchers involved will focus their attention on “Frontiers with Strongly Correlated and Topological Mesoscopic Systems.”

SPICE meetings will take place at various venues. One of them is Castle Waldthausen, located near Mainz University and offering meeting rooms and accommodations in a very special atmosphere. “Besides providing an excellent scientific environment, we also want to offer insight into the cultural characteristics of the region,” emphasized Sinova.

Weitere Informationen:

http://www.spice.uni-mainz.de/ - Spin Phenomena Interdisciplinary Center (SPICE) ;
http://www.uni-mainz.de/presse/16992_ENG_HTML.php - press release "Jairo Sinova receives ERC funding to develop new spintronic concepts" ;
http://www.uni-mainz.de/presse/16762_ENG_HTML.php - press release "Mainz University receives approval for an Alexander von Humboldt Professorship in Physics"

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs
07.11.2017 | Technische Universität München

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>