Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splash, Babble, Sploosh: Computer Algorithm Simulates the Sounds of Water

08.06.2009
Cornell University computer graphics researchers use new algorithms to simulate a wide range of the sounds of water and other liquids. They will report their research at the 2009 ACM SIGGRAPH conference Aug. 3-7 in New Orleans, an international conference on computer graphics and interactive techniques.

Those are some of the sounds that have been missing from computer graphic simulations of water and other fluids, according to researchers in Cornell’s Department of Computer Science, who have come up with new algorithms to simulate such sounds to go with the images.


The work by Doug James, associate professor of computer science, and graduate student Changxi Zheng will be reported at the 2009 ACM SIGGRAPH conference Aug. 3-7 in New Orleans, an international conference on computer graphics and interactive techniques. It is the first step in a broader research program on sound synthesis supported by a $1.2 million grant from the Human Centered Computing Program of the National Science Foundation (NSF) to James, assistant professor Kavita Bala and associate professor Steve Marschner.

In computer-animated movies, sound can be added after the fact from recordings or by Foley artists. But as virtual worlds grow increasingly interactive, the researchers point out, sounds will need to be generated automatically to fit events that can’t be predicted in advance. Recordings can be cued in, but can be repetitive and not always well matched to what’s happening.

“We have no way to efficiently compute the sounds of water splashing, paper crumpling, hands clapping, wind in trees or a wine glass dropped onto the floor,” the researchers said in their research proposal.

Along with fluid sounds, the research also will simulate sounds made by objects in contact, like a bin of Legos; the noisy vibrations of thin shells, like trash cans or cymbals; and the sounds of brittle fracture, like breaking glass and the clattering of the resulting debris.

All the simulations will be based on the physics of the objects being simulated in computer graphics, calculating how those objects would vibrate if they actually existed, and how those vibrations would produce acoustic waves in the air. Physics-based simulations also can be used in design, just as visual simulation is now, James said. “You can tell what it’s going to sound like before you build it,” he explained, noting that a lot of effort often goes into making things quieter.

In their SIGGRAPH paper, Zheng and James report that most of the sounds of water are created by tiny air bubbles that form as water pours and splashes. Moving water traps air bubbles on the scale of a millimeter or so. Surface tension contracts the bubbles, compressing the air inside until it pushes back and expands the bubble. The repeated expansion and contraction over milliseconds generates vibrations in the water that eventually make its surface vibrate, acting like a loudspeaker to create sound waves in the air.

The simulation method developed by the Cornell researchers starts with the geometry of the scene, figures out where the bubbles would be and how they’re moving, computes the expected vibrations and finally the sounds they would produce. The simulation is done on a highly parallel computer, with each processor computing the effects of multiple bubbles. The researchers have fine-tuned the results by comparing their simulations with real water sounds.

Demonstration videos of simulations of falling, pouring, splashing and babbling water are available at http://www.cs.cornell.edu/projects/HarmonicFluids.

The current methods still require hours of offline computing time, and work best on compact sound sources, the researchers noted, but they said further development should make possible the real-time performance needed for interactive virtual environments and deal with larger sound sources such as swimming pools or perhaps even Niagara Falls. They also plan to approach the more complex collections of bubbles in foam or plumes.

The research reported in the SIGGRAPH paper was supported in part by an NSF Faculty Early Career Award to James, and by the Alfred P. Sloan Foundation, Pixar, Intel and Autodesk.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.cs.cornell.edu/projects/HarmonicFluids

Further reports about: ACM NSF SIGGRAPH Splash air bubbles algorithm computer graphics virtual environment

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>