Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using sound waves for remote bomb detection

24.10.2013
A remote acoustic detection system designed to identify homemade bombs can determine the difference between those that contain low-yield and high-yield explosives.

That capability – never before reported in a remote bomb detection system – was described in a paper by Vanderbilt engineer Douglas Adams presented at the American Society of Mechanical Engineers Dynamic Systems and Control Conference on Oct. 23 in Stanford, CA.

A number of different tools are currently used for explosives detection. These range from dogs and honeybees to mass spectrometry, gas chromatography and specially designed X-ray machines.

“Existing methods require you to get quite close to the suspicious object,” said Adams, Distinguished Professor of Civil and Environmental Engineering. “The idea behind our project is to develop a system that will work from a distance to provide an additional degree of safety.”

Adams is developing the acoustic detection system with Christopher Watson and Jeffrey Rhoads at Purdue University and John Scales at the Colorado School of Mines as part of a major Office of Naval Research grant.

The new system consists of a phased acoustic array that focuses an intense sonic beam at a suspected improvised explosive device. At the same time, an instrument called a laser vibrometer is aimed at the object’s casing and records how the casing is vibrating in response. The nature of the vibrations can reveal a great deal about what is inside the container.

“We are applying techniques of laser vibrometry that have been developed for non-destructive inspection of materials and structures to the problem of bomb detection and they are working quite well,” Adams said.

In the current experiments, the engineers created two targets. One used an inert material that simulates the physical properties of low-yield explosive. The other was made from a simulant of high-yield explosive. They were fastened to acrylic caps to simulate plastic containers. Mechanical actuators substituted for the acoustic array to supply the sonic vibrations. The laser vibrometer was focused on the top of the plastic cap, corresponding to the outside of the bomb casing.

The tests clearly showed differences in the vibration patterns of the two caps that allow the researchers to distinguish between the two materials (hydroxyl-terminated polybutadiene polymer embedded with 50 percent and 75 percent by volume ammonium chloride crystals).

At the conference, Adams also showed a video of another test of the acoustic technique that showed it can differentiate between an empty container, one filled with water and one filled with a clay-like substance. The test used one-gallon plastic milk containers. In this case, the acoustic waves were produced by a device called an air driver. The empty jug had the largest vibrations while the jug containing the clay-like material had the smallest vibrations. The vibrations of the water-filled jug were in between.

The researchers have established that the best way to detect the contents of devices made of rigid material like metal is to use short ultrasonic waves. On the other hand, longer subsonic and infrasonic waves can be used to penetrate softer materials like plastics. Adam’s colleagues at Purdue are studying frequencies that can penetrate other materials like cloth.

The project is part of a $7 million multi-university research initiative led by North Carolina State University and funded by Office of Naval Research grant N00014-10-1-0958.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

Contact:
David F. Salisbury, (615) 322-NEWS
david.salisbury@vanderbilt.edu

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>