Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniffing Out Memories

09.11.2009
Why are some smells irrevocably tied to certain memories? Weizmann Institute scientists found that our brain shows unique activity the first time we encounter a smell in the context of a particular experience.

From Proust's Madeleines to the overbearing food critic in the movie Ratatouille who's transported back to his childhood at the aroma of stew, artists have long been aware that some odors can spontaneously evoke strong memories. Scientists at the Weizmann Institute of Science have now revealed the scientific basis of this connection. Their research appeared in the latest issue of Current Biology.

Graduate student Yaara Yeshurun, together with Profs. Noam Sobel and Yadin Dudai of the Institute's Neurobiology Department, thought that the key might not necessarily lie in childhood, but rather in the first time a smell is encountered in the context of a particular object or event. In other words, the initial association of a smell with an experience will somehow leave a unique and lasting impression in the brain.

To test this idea, the scientists devised an experiment: First, in a special smell laboratory, subjects viewed images of 60 visual objects, each presented simultaneously with either a pleasant or an unpleasant odor generated in a machine called an olfactometer. Next, the subjects were put in an fMRI scanner to measure their brain activity as they reviewed the images they'd seen and attempted to remember which odor was associated with each. Then, the whole test was repeated - images, odors and fMRI - with the same images, but different odors accompanying each. Finally, the subjects came back one week later, to be scanned in the fMRI again. They viewed the objects one more time and were asked to recall the odors they associated with them.

The scientists found that after one week, even if the subject recalled both odors equally, the first association revealed a distinctive pattern of brain activity. The effect was seen whether the smell was pleasant or unpleasant. This unique representation showed up in the hippocampus, a brain structure involved in memory, and in the amygdala, a brain structure involved in emotion. The pattern was so profound, it enabled the scientists to predict which associations would be remembered just by looking at the brain activity within these regions following the initial exposure. The scientists could look at the fMRI data on the first day of the experiment and predict which associations would come up a week later. To see if other sensory experiences might share this tendency, the scientists repeated the entire experiment using sounds rather than smells; they found that sounds did not arouse a similar distinctive first-time pattern of activity. In other words, these results were specific to the sense of smell. 'For some reason, the first association with smell gets etched into memory,' says Sobel, 'and this phenomenon allowed us to predict what would be remembered one week later based on brain activity alone'.

Yeshurun: 'As far as we know, this phenomenon is unique to smell. Childhood olfactory memories may be special not because childhood is special, but simply because those years may be the first time we associate something with an odor.

Prof. Noam Sobel's research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the J&R Foundation; the Eisenberg-Keefer Fund for New Scientists; and Regina Wachter, New York, NY

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org

Yivsam Azgad | idw
Further information:
http://www.eurekalert.org
http://wis-wander.weizmann.ac.il

Further reports about: Amygdala Hippocampus Science TV Sniffing aroma of stew brain structure fMRI memories

More articles from Interdisciplinary Research:

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>