Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists complete most comprehensive genetic analysis yet of corn

04.06.2012
Genetic analysis could help meet nutrition needs of growing population
An interdisciplinary team, led by researchers at Cornell University and the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), today published the most comprehensive analysis to date of the corn genome.

The team expects the achievement to speed up development of improved varieties of one of the world's most important agricultural commodities. The results should boost international efforts to increase yields, expand areas where corn can be cultivated and produce varieties better equipped to resist pests and disease.

Funded in the United States by the National Science Foundation (NSF) and the USDA, the work was a collaborative effort by scientists at 17 U.S. and foreign institutions that include the University of Wisconsin-Madison; University of Missouri-Columbia; North Carolina State University; Beijing Genome Institute; University of California, Davis and the International Maize and Wheat Improvement Center, Mexico City, Mexico.

The study appears in two corn genome projects published in separate reports in the June 3 issue of the journal Nature Genetics.
"This work represents a major step forward and an important tool in the arsenal available to scientists and breeders for improving a vital source of nutrition," said Edward B. Knipling, administrator of USDA's Agricultural Research Service.

The analysis could also help those, who develop corn yields as a source of fuel, who manage crops in the face of changing climates and who are concerned about the diminishing supply of arable land and growing populations, he said.
"This project is a stellar example of how collaborations of scientists, here and abroad, leverage resources across multiple agencies to enable transformational research with the potential to address urgent societal needs for a bio-based economy," said John Wingfield, assistant director for NSF's Biological Sciences Directorate.

It is anticipated that the tools and approaches generated in this project will enable scientists to look at genetic differences in other organisms as they respond to global climate change, human disturbance and invasive species, Wingfield explained.

The studies' collaborators shed light on corn's genetic diversity, detail how it evolved and outline how corn--known as maize among scientists--continues to diversify as it adapts to changing climates and habitats.

One study, published in the journal led by team member, USDA-ARS and Cold Spring Harbor Laboratory scientist Doreen Ware, examines the genetic structure and the relationships and sequential ordering of individual genes in more than 100 varieties of wild and domesticated corn.

Another study led by team member Jeff Ross-Ibarra from the University of California, Davis gives an extraordinary glimpse into how corn evolved more than 8,700 years ago from a wild grass in the lowland areas of southwestern Mexico into today's ubiquitous international commodity.

Analysis of corn genome could speed up efforts to produce varieties better equipped to resist pests and disease. Credit: Nicolle Rager Fuller, National Science Foundation

The researchers compared wild varieties with traditional corn varieties from across the Americas and with modern improved breeding lines. They identified hundreds of genes that played a role in the transformation of corn from its wild origins to today's cultivated crop and show how that transition was largely achieved by ancient farmers who first domesticated it thousands of years ago.

Last year, the economic value of the U.S. corn crop was $76 billion with U.S. growers producing an estimated 12 billion bushels, more than a third of the world's supply. Corn is the largest production crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>