Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Can Robots Get Our Attention?

10.03.2011
Getting someone’s attention can be easy with a loud noise or a shout, but what if the situation calls for a little more tact? How can a robot use subtle cues to attract a human’s notice and tell when it has captured it?

In a preliminary study, researchers at the Georgia Institute of Technology have found that they can program a robot to understand when it gains a human’s attention and when it falls short. The research is being presented today at the Human-Robot Interaction conference in Lausanne, Switzerland.

“The primary focus was trying to give Simon, our robot, the ability to understand when a human being seems to be reacting appropriately, or in some sense is interested now in a response with respect to Simon and to be able to do it using a visual medium, a camera,” said Aaron Bobick, professor and chair of the School of Interactive Computing in Georgia Tech’s College of Computing.

Using the socially expressive robot Simon, from Assistant Professor Andrea Thomaz’s Socially Intelligent Machines lab, researchers wanted to see if they could tell when he had successfully attracted the attention of a human who was busily engaged in a task and when he had not.

“Simon would make some form of a gesture, or some form of an action when the user was present, and the computer vision task was to try to determine whether or not you had captured the attention of the human being,” said Bobick.

With close to 80 percent accuracy Simon was able to tell, using only his cameras as a guide, whether someone was paying attention to him or ignoring him.

“We would like to bring robots into the human world. That means they have to engage with human beings, and human beings have an expectation of being engaged in a way similar to the way other human beings would engage with them,” said Bobick.

“Other human beings understand turn-taking. They understand that if I make some indication, they’ll turn and face someone when they want to engage with them and they won’t when they don’t want to engage with them. In order for these robots to work with us effectively, they have to obey these same kinds of social conventions, which means they have to perceive the same thing humans perceive in determining how to abide by those conventions,” he added.

Researchers plan to go further with their investigations into how Simon can read communication cues by studying whether he can tell by a person’s gaze whether they are paying attention or using elements of language or other actions.

“Previously people would have pre-defined notions of what the user should do in a particular context and they would look for those,” said Bobick. “That only works when the person behaves exactly as expected. Our approach, which I think is the most novel element, is to use the user’s current behavior as the baseline and observe what changes.”

The research team for this study consisted of Bobick, Thomaz, doctoral student Jinhan Lee and undergraduate student Jeffrey Kiser.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: Human-Robot Interaction Pervasive Computing Robots human beings

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>