Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Can Robots Get Our Attention?

10.03.2011
Getting someone’s attention can be easy with a loud noise or a shout, but what if the situation calls for a little more tact? How can a robot use subtle cues to attract a human’s notice and tell when it has captured it?

In a preliminary study, researchers at the Georgia Institute of Technology have found that they can program a robot to understand when it gains a human’s attention and when it falls short. The research is being presented today at the Human-Robot Interaction conference in Lausanne, Switzerland.

“The primary focus was trying to give Simon, our robot, the ability to understand when a human being seems to be reacting appropriately, or in some sense is interested now in a response with respect to Simon and to be able to do it using a visual medium, a camera,” said Aaron Bobick, professor and chair of the School of Interactive Computing in Georgia Tech’s College of Computing.

Using the socially expressive robot Simon, from Assistant Professor Andrea Thomaz’s Socially Intelligent Machines lab, researchers wanted to see if they could tell when he had successfully attracted the attention of a human who was busily engaged in a task and when he had not.

“Simon would make some form of a gesture, or some form of an action when the user was present, and the computer vision task was to try to determine whether or not you had captured the attention of the human being,” said Bobick.

With close to 80 percent accuracy Simon was able to tell, using only his cameras as a guide, whether someone was paying attention to him or ignoring him.

“We would like to bring robots into the human world. That means they have to engage with human beings, and human beings have an expectation of being engaged in a way similar to the way other human beings would engage with them,” said Bobick.

“Other human beings understand turn-taking. They understand that if I make some indication, they’ll turn and face someone when they want to engage with them and they won’t when they don’t want to engage with them. In order for these robots to work with us effectively, they have to obey these same kinds of social conventions, which means they have to perceive the same thing humans perceive in determining how to abide by those conventions,” he added.

Researchers plan to go further with their investigations into how Simon can read communication cues by studying whether he can tell by a person’s gaze whether they are paying attention or using elements of language or other actions.

“Previously people would have pre-defined notions of what the user should do in a particular context and they would look for those,” said Bobick. “That only works when the person behaves exactly as expected. Our approach, which I think is the most novel element, is to use the user’s current behavior as the baseline and observe what changes.”

The research team for this study consisted of Bobick, Thomaz, doctoral student Jinhan Lee and undergraduate student Jeffrey Kiser.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

Further reports about: Human-Robot Interaction Pervasive Computing Robots human beings

More articles from Interdisciplinary Research:

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>