Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From robotics to animal motor-control systems

23.03.2009
Multiple timescales of neural activities are important to motor-control systems in animals, according to research using robots

Programmers of robots have long been challenged by the difficulty of implementing some of the simplest of human activities, such as walking up stairs or digging a ditch.

This is partially due to the versatility of human motor behavior in varying situations. Such robustness can be achieved with a functional hierarchy: a division of labor that allows complex motor behaviors to arise from simpler tasks that are connected at a higher level.

Previously, researchers had theorized that a connection of reusable sub-movements called motor primitives would be represented by spatially localized networks in the brain. Now, Yuichi Yamashita and Jun Tani from the RIKEN Brain Science Institute, Wako, have shown that the temporal characteristics of neurons in these motor networks may be just as critical to their functional hierarchy (1).

Yamashita and Tani took a synthetic approach to test their hypothesis that multiple timescales of activity could mediate motor organization. To this end, the scientists trained a robot to complete a set of distinct, but related, tasks. These motor behaviors included picking up a block to shake it side to side, picking up a block to shake it up and down, and touching the top of a block with one hand.

“It is generally thought that diverse behavior of an animal results from a functional hierarchy of the motor-control system,” explains Yamashita, where “motor primitives are flexibly integrated.” For example, the robot’s tasks could be executed by mixing and matching such primitives as making contact with an object, lifting it, and shaking it.

The key distinction in Yamashita and Tani’s work was that the hierarchical organization arose from multiple timescales in the network activity, rather than through spatial connections. The spatially based networks of previous studies consisted of isolated modules responding to each primitive in the lower levels, and gates to select and switch between primitives in the higher levels.

By contrast, the neural network of Yamashita and Tani’s robot comprised fast units, which could respond quickly to changing inputs, and slow units, which tended to avoid rapid fluctuations by relying on previous states. Based on the network activity, it appeared that the fast units had spontaneously organized to represent motor primitives, whereas the slow units resembled gates that ordered and activated the primitives. This discovery helps to explain the puzzling discrepancy between previous theories of spatially based motor organization and the elusive evidence of such spatial organization in the animal brain.

Reference

1. Yamashita, Y. & Tani, J. Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4, e1000220 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Behavior and Dynamic Cognition

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/663/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>