Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From robotics to animal motor-control systems

23.03.2009
Multiple timescales of neural activities are important to motor-control systems in animals, according to research using robots

Programmers of robots have long been challenged by the difficulty of implementing some of the simplest of human activities, such as walking up stairs or digging a ditch.

This is partially due to the versatility of human motor behavior in varying situations. Such robustness can be achieved with a functional hierarchy: a division of labor that allows complex motor behaviors to arise from simpler tasks that are connected at a higher level.

Previously, researchers had theorized that a connection of reusable sub-movements called motor primitives would be represented by spatially localized networks in the brain. Now, Yuichi Yamashita and Jun Tani from the RIKEN Brain Science Institute, Wako, have shown that the temporal characteristics of neurons in these motor networks may be just as critical to their functional hierarchy (1).

Yamashita and Tani took a synthetic approach to test their hypothesis that multiple timescales of activity could mediate motor organization. To this end, the scientists trained a robot to complete a set of distinct, but related, tasks. These motor behaviors included picking up a block to shake it side to side, picking up a block to shake it up and down, and touching the top of a block with one hand.

“It is generally thought that diverse behavior of an animal results from a functional hierarchy of the motor-control system,” explains Yamashita, where “motor primitives are flexibly integrated.” For example, the robot’s tasks could be executed by mixing and matching such primitives as making contact with an object, lifting it, and shaking it.

The key distinction in Yamashita and Tani’s work was that the hierarchical organization arose from multiple timescales in the network activity, rather than through spatial connections. The spatially based networks of previous studies consisted of isolated modules responding to each primitive in the lower levels, and gates to select and switch between primitives in the higher levels.

By contrast, the neural network of Yamashita and Tani’s robot comprised fast units, which could respond quickly to changing inputs, and slow units, which tended to avoid rapid fluctuations by relying on previous states. Based on the network activity, it appeared that the fast units had spontaneously organized to represent motor primitives, whereas the slow units resembled gates that ordered and activated the primitives. This discovery helps to explain the puzzling discrepancy between previous theories of spatially based motor organization and the elusive evidence of such spatial organization in the animal brain.

Reference

1. Yamashita, Y. & Tani, J. Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4, e1000220 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Behavior and Dynamic Cognition

Saeko Okada | Research asia research news
Further information:
http://www.researchsea.com
http://www.rikenresearch.riken.jp/research/663/

More articles from Interdisciplinary Research:

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>