Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot researcher combines nature to nurture ‘superhuman’ navigation

01.10.2014

Computer modelling of the human eye, the brain of a rat and a robot could revolutionise advances in neuroscience and new technology, says a QUT leading robotics researcher.

Dr Michael Milford from QUT's Science and Engineering Faculty says the new study uses new computer algorithms to enable robots to navigate intelligently, unrestricted by high-density buildings or tunnels.


Dr Michael Milford with one of the all-terrain robots to benefit from brain-inspired modelling.

"This is a very Frankenstein type of project," Dr Milford said.

"It's putting two halves of a thing together because we're taking the eyes of a human and linking them up with the brain of a rat.

"A rodent's spatial memory is strong but has very poor vision while humans can easily recognise where they are because of eyesight," he said.

"We have existing research, software algorithms in robots to model the human and rat brain.

"We'll plug in the two pieces of software together on a robot moving around in an environment and see what happens."

The research has been published in the British journal Philosophical Transactions of the Royal Society B.

Dr Milford said the research would also study how the human brain degrades, in particular how it fails to recognize familiar places.

"The brain's spatial navigation capabilities degrade early in diseases like Alzheimer's," he said.

"So it has relevance as a potential study mechanism for studying mental disease as well."

Dr Milford was awarded an Australian Research Council Future Fellowship to support his study.

He is one of Australia's leading experts on developing technology to visually recognise locations and is chief investigator at the QUT-based headquarters of the Australian Research Council Centre of Excellence in Robotic Vision.

Dr Milford said place recognition is a key component of navigation but the technology to date is limited.

"Current robotic and personal navigation systems leave much to be desired," he said.

"GPS only works in open outdoor areas, lasers are expensive and cameras are highly sensitive but in contrast, nature has evolved superb navigation systems."

Dr Milford said drivers could miss or take the wrong exit because personal navigation systems didn't work in tunnels because there was no satellite signal.

"That's an example of one of many ways we'd like to create really cool, useful technology," he said.

Dr Milford said he was motivated to create amazing technology through fundamental scientific work.

He said the research project could have benefits for manufacturing, environmental management and aged health.

"We have very sophisticated models of human vision and a rat's brain, which are already state of the art.

"We've got all the ground work there but plugging them altogether is the massive challenge we have.

"I don't know exactly how it's going to work and that's why it's research."

The interdisciplinary research project involves collaborations between QUT and the University of Queensland and other top international institutions including Harvard, Boston and Antwerp universities.

The future fellowship is worth $676,174 over the next five years.

Media contact:
Debra Nowland, QUT media officer (Tue/Wed/Thur), 07 3138 1150 or media@qut.edu.au

Debra Nowland | Eurek Alert!
Further information:
http://www.news.qut.edu.au/cgi-bin/WebObjects/News.woa/wa/goNewsPage?newsEventID=78859

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>