Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot demonstrates human-like handwriting – researchers enable fluid writing and grasping movements

14.10.2011
Scientists at the University of Göttingen and the Bernstein Focus Neurotechnology Göttingen have developed a method allowing robots to learn fluid movements such as writing or reaching for objects.

This would allow future machines to be able to imitate handwriting, pour water into a glass or handle a dishwasher. The results were published online in the journal IEEE Transactions on Robotics.


The robotic arm perfectly mimics a sample of handwriting. © Institut für Physik 3 - Biophysik, Univ. Göttingen

Most human movements consist of a multitude of individual actions, which are connected to each other automatically. When a child learns to write, it initially guides the pen hesitantly. Over time, the child gradually learns to connect the individual letters to each other smoothly.

To date, however, machines work only through a chain of distinct motion elements. Scientists working with Prof. Dr. Florentin Wörgötter, coordinator of the Bernstein Focus Neurotechnology at the University of Göttingen, have now altered the mathematical basis of control commands in a few, but crucial, details. As a result, the robot can combine actions such as writing multiple letters connected to each other dynamically. Thus, robotic movements come much closer to the biological model than previously.

“In ten to fifteen years service robots will play a major role, so it is important that machine movement becomes more and more human-like, and thus predictable for us, so that we can work together without accidents,” explains Wörgötter.

The Minister for Science and Culture in the state of Lower Saxony, Prof. Dr. Johanna Wanka, was delighted by the capabilities of the robot demonstrated on a visit to the Bernstein Focus Neurotechnology and the Bernstein Center for Computational Neuroscience in Göttingen. After the Minister provided a handwritten sample, the robot mimicked it perfectly. “Now, our robot is the first to officially master ministerial handwriting," said Prof. Wörgötter with a smile. “I am excited about the scientific results obtained at this location in Göttingen and I look forward to the many new possible applications for these technologies in the field of service robotics though I will continue to write my signature myself,” states the Minister.

The mathematical method that was further developed by the Göttingen scientists is particularly characterized by the fact that it can be easily transferred to different courses of action and produces extremely smooth movements. Thus, it could make a significant contribution to the development of robots that support humans in their daily lives in the future.

The Bernstein Focus Neurotechnology Göttingen is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original Publication: Kulvicius T, Ning K, Tamosiunaite M, Wörgötter F (2011): Joining movement sequences: modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Transactions on Robotics, doi: 10.1109/TRO.2011.2163863; September 1, 2011.

Contact:
Prof. Dr. Florentin Wörgötter
Georg-August-Universität Göttingen & Bernstein Center for Computational Neuroscience Göttingen
III. Institute of Physics - Biophysics
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone: +49 (0)551 39-10760, Fax +49 (0)551 39-7720
E-Mail: worgott@physik3.gwdg.

Johannes Faber | idw
Further information:
http://www.uni-goettingen.de/
http://www.nncn.de/
http://www.bccn-goettingen.de/Groups/GroupCN

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>