Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot demonstrates human-like handwriting – researchers enable fluid writing and grasping movements

14.10.2011
Scientists at the University of Göttingen and the Bernstein Focus Neurotechnology Göttingen have developed a method allowing robots to learn fluid movements such as writing or reaching for objects.

This would allow future machines to be able to imitate handwriting, pour water into a glass or handle a dishwasher. The results were published online in the journal IEEE Transactions on Robotics.


The robotic arm perfectly mimics a sample of handwriting. © Institut für Physik 3 - Biophysik, Univ. Göttingen

Most human movements consist of a multitude of individual actions, which are connected to each other automatically. When a child learns to write, it initially guides the pen hesitantly. Over time, the child gradually learns to connect the individual letters to each other smoothly.

To date, however, machines work only through a chain of distinct motion elements. Scientists working with Prof. Dr. Florentin Wörgötter, coordinator of the Bernstein Focus Neurotechnology at the University of Göttingen, have now altered the mathematical basis of control commands in a few, but crucial, details. As a result, the robot can combine actions such as writing multiple letters connected to each other dynamically. Thus, robotic movements come much closer to the biological model than previously.

“In ten to fifteen years service robots will play a major role, so it is important that machine movement becomes more and more human-like, and thus predictable for us, so that we can work together without accidents,” explains Wörgötter.

The Minister for Science and Culture in the state of Lower Saxony, Prof. Dr. Johanna Wanka, was delighted by the capabilities of the robot demonstrated on a visit to the Bernstein Focus Neurotechnology and the Bernstein Center for Computational Neuroscience in Göttingen. After the Minister provided a handwritten sample, the robot mimicked it perfectly. “Now, our robot is the first to officially master ministerial handwriting," said Prof. Wörgötter with a smile. “I am excited about the scientific results obtained at this location in Göttingen and I look forward to the many new possible applications for these technologies in the field of service robotics though I will continue to write my signature myself,” states the Minister.

The mathematical method that was further developed by the Göttingen scientists is particularly characterized by the fact that it can be easily transferred to different courses of action and produces extremely smooth movements. Thus, it could make a significant contribution to the development of robots that support humans in their daily lives in the future.

The Bernstein Focus Neurotechnology Göttingen is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original Publication: Kulvicius T, Ning K, Tamosiunaite M, Wörgötter F (2011): Joining movement sequences: modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Transactions on Robotics, doi: 10.1109/TRO.2011.2163863; September 1, 2011.

Contact:
Prof. Dr. Florentin Wörgötter
Georg-August-Universität Göttingen & Bernstein Center for Computational Neuroscience Göttingen
III. Institute of Physics - Biophysics
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone: +49 (0)551 39-10760, Fax +49 (0)551 39-7720
E-Mail: worgott@physik3.gwdg.

Johannes Faber | idw
Further information:
http://www.uni-goettingen.de/
http://www.nncn.de/
http://www.bccn-goettingen.de/Groups/GroupCN

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>