Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robojelly Gets an Upgrade: Underwater Robot Learns to Swim More Like the Real Thing

Engineers at Virginia Polytechnic Institute and State University (VirginiaTech) have developed a robot that mimics the graceful motions of jellyfish so precisely that it has been named Robojelly.

Developed for the Office of Naval Research in 2009, this vehicle was designed to conduct ocean underwater surveillance, enabling it potentially to detect chemical spills, monitor the presence of ships and submarines, and observe the migration of schools of fish.

Recently, a team at VirginiaTech has improved the performance of this silicone swimmer, enabling it to better overcome the limitations of its artificial skin and better mimic the true motion of a jellyfish. Details on this new design and how it might provide new insights into jellyfish propulsion mechanisms will be presented at the 2011 meeting of the American Physical Society’s Division of Fluid Dynamics in Baltimore, Md., Nov. 20-22.

According to VirginiaTech mechanical engineer Alex Villanueva, Robojelly looks very similar to an actual jellyfish. “Its geometry is copied almost exactly from a moon jellyfish [Aurelia aurita],” he said. The robot is built out of silicone and uses shape memory alloy (SMA) actuators to swim.

To move through the water, the natural animal uses the bell section of its body, which deforms and contracts to provide thrust. The lower, or lagging, section of the bell is known as the flexible margin, and it deforms slightly later in the swimming process than the rest of the bell. Until recently, however, Robojelly lacked this crucial piece of anatomy in its design.

Villanueva and his colleagues tested a number of different designs for their robot, some with and without an analog to a flexible margin. Initially, the artificial materials used in construction presented a problem. Unlike their natural counterparts, the artificial materials tended to fold as they deformed, reducing Robojelly’s performance. After testing a number of designs and lengths for the folding margin, the engineers discovered that cutting slots into the bell reduced this unwanted folding effect.

This gave Robojelly a truer swimming stroke, as well as a big boost in speed.

“These results clearly demonstrate that the flap plays an important role in the propulsion mechanism of Robojelly and provides an anatomical understanding of natural jellyfish,” said Villanuerva.

The talk, “Effects of a flexible margin on Robojelly vortex structures,” is at 3:05 p.m. on Tuesday, Nov. 22, 2011, in Room 324. Abstract:

The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at:
Main Meeting Web Site:
Search Abstracts:
Directions and Maps:
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (, 301-209-3091).
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See:

Charles Blue | Newswise Science News
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>