Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robojelly Gets an Upgrade: Underwater Robot Learns to Swim More Like the Real Thing

21.11.2011
Engineers at Virginia Polytechnic Institute and State University (VirginiaTech) have developed a robot that mimics the graceful motions of jellyfish so precisely that it has been named Robojelly.

Developed for the Office of Naval Research in 2009, this vehicle was designed to conduct ocean underwater surveillance, enabling it potentially to detect chemical spills, monitor the presence of ships and submarines, and observe the migration of schools of fish.

Recently, a team at VirginiaTech has improved the performance of this silicone swimmer, enabling it to better overcome the limitations of its artificial skin and better mimic the true motion of a jellyfish. Details on this new design and how it might provide new insights into jellyfish propulsion mechanisms will be presented at the 2011 meeting of the American Physical Society’s Division of Fluid Dynamics in Baltimore, Md., Nov. 20-22.

According to VirginiaTech mechanical engineer Alex Villanueva, Robojelly looks very similar to an actual jellyfish. “Its geometry is copied almost exactly from a moon jellyfish [Aurelia aurita],” he said. The robot is built out of silicone and uses shape memory alloy (SMA) actuators to swim.

To move through the water, the natural animal uses the bell section of its body, which deforms and contracts to provide thrust. The lower, or lagging, section of the bell is known as the flexible margin, and it deforms slightly later in the swimming process than the rest of the bell. Until recently, however, Robojelly lacked this crucial piece of anatomy in its design.

Villanueva and his colleagues tested a number of different designs for their robot, some with and without an analog to a flexible margin. Initially, the artificial materials used in construction presented a problem. Unlike their natural counterparts, the artificial materials tended to fold as they deformed, reducing Robojelly’s performance. After testing a number of designs and lengths for the folding margin, the engineers discovered that cutting slots into the bell reduced this unwanted folding effect.

This gave Robojelly a truer swimming stroke, as well as a big boost in speed.

“These results clearly demonstrate that the flap plays an important role in the propulsion mechanism of Robojelly and provides an anatomical understanding of natural jellyfish,” said Villanuerva.

The talk, “Effects of a flexible margin on Robojelly vortex structures,” is at 3:05 p.m. on Tuesday, Nov. 22, 2011, in Room 324. Abstract: http://absimage.aps.org/image/MWS_DFD11-2011-001706.pdf

MORE MEETING INFORMATION
The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at: http://www.dfd2011.jhu.edu/index.html
USEFUL LINKS
Main Meeting Web Site: http://www.dfd2011.jhu.edu/index.html
Search Abstracts: http://meeting.aps.org/Meeting/DFD11/Content/2194
Directions and Maps: http://www.dfd2011.jhu.edu/venuemaps.html
PRESS REGISTRATION
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).
SUPPORT DESK FOR REPORTERS
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Charles Blue | Newswise Science News
Further information:
http://www.aps.org

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>