Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want Responsible Robotics? Start with Responsible Humans

31.07.2009
When the legendary science fiction writer Isaac Asimov penned the “Three Laws of Responsible Robotics,” he forever changed the way humans think about artificial intelligence, and inspired generations of engineers to take up robotics.

In the current issue of journal IEEE Intelligent Systems, two engineers propose alternative laws to rewrite our future with robots.

The future they foresee is at once safer, and more realistic.

“When you think about it, our cultural view of robots has always been anti-people, pro-robot,” explained David Woods, professor of integrated systems engineering at Ohio State University. “The philosophy has been, ‘sure, people make mistakes, but robots will be better -- a perfect version of ourselves.’ We wanted to write three new laws to get people thinking about the human-robot relationship in more realistic, grounded ways.”

Asimov’s laws are iconic not only among engineers and science fiction enthusiasts, but the general public as well. The laws often serve as a starting point for discussions about the relationship between humans and robots.

But while evidence suggests that Asimov thought long and hard about his laws when he wrote them, Woods believes that the author did not intend for engineers to create robots that followed those laws to the letter.

“Go back to the original context of the stories,” Woods said, referring to Asimov’s I, Robot among others. “He’s using the three laws as a literary device. The plot is driven by the gaps in the laws -- the situations in which the laws break down. For those laws to be meaningful, robots have to possess a degree of social intelligence and moral intelligence, and Asimov examines what would happen when that intelligence isn’t there.”

“His stories are so compelling because they focus on the gap between our aspirations about robots and our actual capabilities. And that’s the irony, isn’t it? When we envision our future with robots, we focus on our hopes and desires and aspirations about robots -- not reality.”

In reality, engineers are still struggling to give robots basic vision and language skills. These efforts are hindered in part by our lack of understanding of how these skills are managed in the human brain. We are far from a time when humans may teach robots a moral code and responsibility.

Woods and his coauthor, Robin Murphy of Texas A&M University, composed three laws that put the responsibility back on humans.

Woods directs the Cognitive Systems Engineering Laboratory at Ohio State, and is an expert in automation safety. Murphy is the Raytheon Professor of Computer Science and Engineering at Texas A&M, and is an expert in both rescue robotics and human-robot interaction.

Together, they composed three laws that focus on the human organizations that develop and deploy robots. They looked for ways to ensure high safety standards.

Here are Asimov’s original three laws:

A robot may not injure a human being, or through inaction, allow a human being to come to harm.

A robot must obey orders given to it by human beings, except where such orders would conflict with the First Law.

A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

And here are the three new laws that Woods and Murphy propose:

A human may not deploy a robot without the human-robot work system meeting the highest legal and professional standards of safety and ethics.

A robot must respond to humans as appropriate for their roles.

A robot must be endowed with sufficient situated autonomy to protect its own existence as long as such protection provides smooth transfer of control which does not conflict with the First and Second Laws.

The new first law assumes the reality that humans deploy robots. The second assumes that robots will have limited ability to understand human orders, and so they will be designed to respond to an appropriate set of orders from a limited number of humans.

The last law is the most complex, Woods said.

“Robots exist in an open world where you can’t predict everything that’s going to happen. The robot has to have some autonomy in order to act and react in a real situation. It needs to make decisions to protect itself, but it also needs to transfer control to humans when appropriate. You don’t want a robot to drive off a ledge, for instance -- unless a human needs the robot to drive off the ledge. When those situations happen, you need to have smooth transfer of control from the robot to the appropriate human,” Woods said.

“The bottom line is, robots need to be responsive and resilient. They have to be able to protect themselves and also smoothly transfer control to humans when necessary.”

Woods admits that one thing is missing from the new laws: the romance of Asimov’s fiction -- the idea of a perfect, moral robot that sets engineers’ hearts fluttering.

“Our laws are little more realistic, and therefore a little more boring,” he laughed.

David Woods | Newswise Science News
Further information:
http://www.osu.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>