Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn motion capture inside out

09.08.2011
Traditional motion capture techniques use cameras to meticulously record the movements of actors inside studios, enabling those movements to be translated into digital models.

But by turning the cameras around — mounting almost two dozen, outward-facing cameras on the actors themselves — scientists at Disney Research, Pittsburgh (DRP), and Carnegie Mellon University (CMU) have shown that motion capture can occur almost anywhere — in natural environments, over large areas and outdoors.

Motion capture makes possible scenes such as those in “Pirates of the Caribbean: Dead Man's Chest,” where the movements of actor Bill Nighy were translated into a digitally created Davy Jones with octopus-like tentacles forming his beard. But body-mounted cameras enable capture of motions, such as running outside or swinging on monkey bars, that would be difficult — if not impossible — otherwise, said Takaaki Shiratori, a post-doctoral associate at DRP.

“This could be the future of motion capture,” said Shiratori, who will make a presentation about the new technique today (Aug. 8) at SIGGRAPH 2011, the International Conference on Computer Graphics and Interactive Techniques in Vancouver. As video cameras become ever smaller and cheaper, “I think anyone will be able to do motion capture in the not-so-distant future,” he said.

Other researchers on the project include Jessica Hodgins, DRP director and a CMU professor of robotics and computer science; Hyun Soo Park, a Ph.D. student in mechanical engineering at CMU; Leonid Sigal, DRP researcher; and Yaser Sheikh, assistant research professor in CMU’s Robotics Institute.

The wearable camera system makes it possible to reconstruct the relative and global motions of an actor thanks to a process called structure from motion (SfM). Takeo Kanade, a CMU professor of computer science and robotics and a pioneer in computer vision, developed SfM 20 years ago as a means of determining the three-dimensional structure of an object by analyzing the images from a camera as it moves around the object, or as the object moves past the camera.

In this application, SfM is not used primarily to analyze objects in a person’s surroundings, but to estimate the pose of the cameras on the person. Researchers used Velcro to mount 20 lightweight cameras on the limbs, and trunk of each subject. Each camera was calibrated with respect to a reference structure. Each person then performed a range-of-motion exercise that allowed the system to automatically build a digital skeleton and estimate positions of cameras with respect to that skeleton.

SfM is used to estimate rough position and orientation of limbs as the actor moves through an environment and to collect sparse 3D information about the environment that can provide context for the captured motion. The rough position and orientation of limbs serves as an initial guess for a refinement step that optimizes the configuration of the body and its location in the environment, resulting in the final motion capture result.

The quality of motion capture from body-mounted cameras does not yet match the fidelity of traditional motion capture, Shiratori said, but will improve as the resolution of small video cameras continues to improve.

The technique requires a significant amount of computational power; a minute of motion capture now can require an entire day to process. Future work will include efforts to find computational shortcuts, such as performing many of the steps simultaneously through parallel processing.

For more information and to see a video, visit the project website:
http://drp.disneyresearch.com/projects/mocap/

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>