Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers turn motion capture inside out

09.08.2011
Traditional motion capture techniques use cameras to meticulously record the movements of actors inside studios, enabling those movements to be translated into digital models.

But by turning the cameras around — mounting almost two dozen, outward-facing cameras on the actors themselves — scientists at Disney Research, Pittsburgh (DRP), and Carnegie Mellon University (CMU) have shown that motion capture can occur almost anywhere — in natural environments, over large areas and outdoors.

Motion capture makes possible scenes such as those in “Pirates of the Caribbean: Dead Man's Chest,” where the movements of actor Bill Nighy were translated into a digitally created Davy Jones with octopus-like tentacles forming his beard. But body-mounted cameras enable capture of motions, such as running outside or swinging on monkey bars, that would be difficult — if not impossible — otherwise, said Takaaki Shiratori, a post-doctoral associate at DRP.

“This could be the future of motion capture,” said Shiratori, who will make a presentation about the new technique today (Aug. 8) at SIGGRAPH 2011, the International Conference on Computer Graphics and Interactive Techniques in Vancouver. As video cameras become ever smaller and cheaper, “I think anyone will be able to do motion capture in the not-so-distant future,” he said.

Other researchers on the project include Jessica Hodgins, DRP director and a CMU professor of robotics and computer science; Hyun Soo Park, a Ph.D. student in mechanical engineering at CMU; Leonid Sigal, DRP researcher; and Yaser Sheikh, assistant research professor in CMU’s Robotics Institute.

The wearable camera system makes it possible to reconstruct the relative and global motions of an actor thanks to a process called structure from motion (SfM). Takeo Kanade, a CMU professor of computer science and robotics and a pioneer in computer vision, developed SfM 20 years ago as a means of determining the three-dimensional structure of an object by analyzing the images from a camera as it moves around the object, or as the object moves past the camera.

In this application, SfM is not used primarily to analyze objects in a person’s surroundings, but to estimate the pose of the cameras on the person. Researchers used Velcro to mount 20 lightweight cameras on the limbs, and trunk of each subject. Each camera was calibrated with respect to a reference structure. Each person then performed a range-of-motion exercise that allowed the system to automatically build a digital skeleton and estimate positions of cameras with respect to that skeleton.

SfM is used to estimate rough position and orientation of limbs as the actor moves through an environment and to collect sparse 3D information about the environment that can provide context for the captured motion. The rough position and orientation of limbs serves as an initial guess for a refinement step that optimizes the configuration of the body and its location in the environment, resulting in the final motion capture result.

The quality of motion capture from body-mounted cameras does not yet match the fidelity of traditional motion capture, Shiratori said, but will improve as the resolution of small video cameras continues to improve.

The technique requires a significant amount of computational power; a minute of motion capture now can require an entire day to process. Future work will include efforts to find computational shortcuts, such as performing many of the steps simultaneously through parallel processing.

For more information and to see a video, visit the project website:
http://drp.disneyresearch.com/projects/mocap/

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>