Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Here come the Ratbots

02.05.2002


A ratbot takes the pleasure line.
© S. Talwar et al.


Instinct overrides desire at a dangerous height.
© S. Talwar et al.


Desire drives remote-controlled rodents.

Remote-controlled rats could soon be detecting earthquake survivors or leading bomb-disposal teams to buried land mines.

Signals from a laptop up to 500 metres away make the rats run, climb, jump and even cross brightly lit open spaces, contrary to their instincts. The rodents carry a backpack containing a radio receiver and a power source that transmits the signals into their brains through electrical probes the breadth of a hair.



"They work for pleasure," says Sanjiv Talwar, the bioengineer at the State University of New York who led the research team. One electrode stimulates the rat’s medial forebrain bundle, or MFB, the ’feelgood’ centre of the mammalian brain. "The rat feels nirvana," Talwar says.

Two more electrodes stimulate the brain region that normally processes signals from the rat’s left and right whiskers.

Now the team hopes to work out how to record nerve impulses from a rat’s nose when it detects an odour such as TNT or the human body. Then ’ratbots’ equipped with satellite positioning tags could be used as smart sensors. The research arm of the US defence department is funding the work.

But the research has as much potential in the emerging field of neuroprosthetics according to learning and memory expert Samuel Deadwyler of Wake Forest University in Winston-Salem, North Carolina. Artificial stimulation of brain regions could bypass damaged nerves that once controlled muscles in paralysed people. "This approach could restore those linkages," says Deadwyler.

Learning for pleasure

Talwar’s team train the wired-up rats to turn left or right in a maze according to the artificial whisker stimuli. A jolt to the MFB rewards the rats for correct behaviour. After a week’s training the rats turn on cue without reward.

Thereafter frequent pleasure pulses motivate trained rats to navigate through virtually any environment. Extra pulses spur them on to challenges like climbing or jumping.

There is a limit to what the animals can be made to do: instinct tempers their eagerness for reward. For example, even continuous MFB stimulation cannot make a rat jump from a dangerous height.

Manipulating animal’s minds, especially for dangerous missions, raises ethical questions. "Debate is certainly needed," admits Talwar. But he points out that the rats live as long as normal, and when not wearing mind-altering backpacks they are just like any other rats. "They’re not zombies, they work with their instincts," he says.

In a way, ratbots are an extension of classical behavioural experiments in which animals learn to perform tasks in return for food, say. It’s just that the reward for leaning, as far as a ratbot is concerned, comes from within. This virtual learning could make ratbots a new model for studying animal behaviour.

References

  1. Talwar, S. K. et al. Rat navigation guided by remote control.. Nature, 417, 37 - 38, (2002).


TOM CLARKE | © Nature News Service

More articles from Interdisciplinary Research:

nachricht Scientists develop machine-learning method to predict the behavior of molecules
11.10.2017 | New York University

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>