Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists zero in on the cellular machinery that enables neurons to fire

19.11.2007
If you ever had a set of Micronauts – toy robots with removable body parts – you probably had fun swapping their heads, imagining how it would affect their behavior. Scientists supported by the National Institutes of Health have been performing similar experiments on ion channels – pores in our nerve cells – to sort out the channels' key functional parts.

In the November 15 issue of Nature, one group of researchers shows that a part of ion channels called the paddle is uniquely transplantable between different channels. Writing in the same issue, another group exploited this property to probe the three-dimensional structure of ion channels on an atomic scale.

"The effects of many toxins and therapeutic drugs, as well as some diseases, can be wholly explained by changes in ion channel function," says Story Landis, Ph.D., director of the National Institute of Neurological Disorders and Stroke (NINDS), part of the NIH. "We also know that ion channels are at least a contributing player in epilepsy, chronic pain, Parkinson's disease and other disorders. As we learn more about how channels work, we're able to pursue more approaches to treatment."

Ion channels are proteins that control the flow of electrically charged salt particles (ions) across the nerve cell membrane. It's the opening and closing of these channels that enables nerve cells to fire off bursts of electrical activity. A built-in voltmeter, called a voltage sensor, pops the channel open when the nerve cell is ready to fire. The papers in Nature hone in on a part of the voltage sensor called the paddle, named for its shape.

In the first study, a team led by NINDS senior investigator Kenton Swartz, Ph.D., shows that the paddle works as a modular unit. Using recombinant DNA technology, they swapped the paddle from an ion channel found in an ancient, volcano-dwelling bacterium to a channel found in rat brain. As long as the paddle was intact, the hybrid channel still worked. This portability could one day be exploited to test potential drugs. For example, researchers who want to target a paddle from a poorly characterized ion channel could stick it into a well-studied channel where the effects of drugs are easier to measure.

Other results in the paper suggest that the paddle itself will be a useful target for new therapeutic drugs. Dr. Swartz's group found that the paddle is the docking site for certain toxins in tarantula venom, which are known to interfere with ion channel opening. There are hints that scorpions, sea anemones and cone snails make similar toxins, Dr. Swartz said. If nature has found ways to manipulate ion channel function, medicinal chemists might be able to do the same, he said.

In the second study, supported by the National Institute of General Medical Sciences (NIGMS), researchers took advantage of the paddle's unique transplantability to create a hybrid ion channel ideal for structural studies. Led by Roderick MacKinnon, M.D. – a Nobel Laureate, an investigator of the Howard Hughes Medical Institute and a biophysicist at Rockefeller University in New York – the team produced data that explain how the voltage sensor is positioned within the membrane and how it triggers channel opening.

"The determination of the three-dimensional structures of ion channels has yielded a framework to understand their fascinating functional properties," says NIGMS director Jeremy M. Berg, Ph.D. "These new results show how clever experimental designs can focus on key questions and steer the direction of additional studies."

Daniel Stimson | EurekAlert!
Further information:
http://www.nih.gov
http://www.ninds.nih.gov

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>