Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic electronics for light diodes and prostheses

29.04.2002


Is it possible to make components out of organic polymers (plastics) whose structure is such that severed nerves can grow right into them and connect with electrodes in a prosthetic hand, for example? This is one of the research fields for Tobias Nyberg at the Section for Biomolecular and Organic Electronics at Linköping University, Sweden.



Part of Tobias Nyberg’s dissertation is based on collaboration with cell biologist Helena Jerregård. Her task is to find ways to get tangled nerves to sort themselves out into nerve threads and tactile threads respectively. Tobias Nyberg’s job is to produce the structures in which the sorted nerves can connect with the electrodes from a future prosthesis. The materials he has used are plastics etched with patterns of tiny channels 20 millionths of a meter in size, covered both by an electrically conductive polymer and a protein that the nerves can grow on.

Another section of the dissertation treats nano- and micrometer-sized structures for solar cells and light diodes. In these contexts it is important that as much light as possible be absorbed by the material, despite the fact that, for other reasons, the material should also be a thin as possible. Tobias Nyberg has therefore found a way to create light-refracting patterns less than a thousandth of a millimeter in size, patterns that prevent light from going straight through, bending it instead so that more light is absorbed.


The Linköping researcher has also invented and applied for a patent for a method to make “micro-domes” of water. His point of departure is a surface that is patterned in circles, where the circles are made of a water-friendly material whereas the surrounding surface is made of a water-repellent material. If such a surface is exposed to cold, moisture in the air condenses on the water-friendly circles, building tiny bumps. This pattern in turn can be molded out of a polymer material with possible future applications in camera apertures, light diodes, and solar cells.

Ingela Björck | alphagalileo

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>