Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists design a tool for detection of rogue molecules “on the run”


A research group of the Microtechnology Centre at Chalmers, MC2, at Chalmers University of Technology in Göteborg, Sweden, has developed an ultra-sensitive device for detecting the presence of organic molecules present in space. Organic material as far away from us as many thousands of light years can be discovered this way. The sensor, which has a world record for sensing low amounts of heat, will be a vital part in satellite systems for the Herschel Mission, a remote sensing satellite project at the European Space Agency planned for launching in 2007.

The new device makes use of a so called “hot electron bolometer”, sensitive for radiation from very small heat sources, occuring when molecules vibrate and rotate. The frequencies of this radiation are between those of heat and those of radiowaves. While standard “HF” radiowaves have frequencies in the region of millions of Hertz, this radiation is found at thousands of billions of Hertz. The heat waves appearing from molecules far out in the Universe create “heated” electrons in an antenna which are transferred to a piece of superconducting material with a thickness of 3 and a length of 150 nanometers. This makes the superconducting material change into a normal conductor, giving rise to a dramatic change in electrical resistance which can be detected by an electronic amplifier. All parts of the system have extreme electrical properties from the points of view of sensitivity and noise. The ingredients, detector and amplifier give a maximum resolution power to squeeze information out of any molecular heat spectra.

The bolometric detector device is made of an ultrathin layer of niobiumnitride, a material that is superconducting at temperatures below -263C. With its extremely small dimensions, more than thousand detectors would fit in a cross section of a human hair.

The new device will be presented at the Hannover Fair, April 15 – 20 this year, by the Microtechnology Centre at Chalmers, MC2.

Jorun Fahle | alphagalileo
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>