Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists design a tool for detection of rogue molecules “on the run”

16.04.2002

A research group of the Microtechnology Centre at Chalmers, MC2, at Chalmers University of Technology in Göteborg, Sweden, has developed an ultra-sensitive device for detecting the presence of organic molecules present in space. Organic material as far away from us as many thousands of light years can be discovered this way. The sensor, which has a world record for sensing low amounts of heat, will be a vital part in satellite systems for the Herschel Mission, a remote sensing satellite project at the European Space Agency planned for launching in 2007.

The new device makes use of a so called “hot electron bolometer”, sensitive for radiation from very small heat sources, occuring when molecules vibrate and rotate. The frequencies of this radiation are between those of heat and those of radiowaves. While standard “HF” radiowaves have frequencies in the region of millions of Hertz, this radiation is found at thousands of billions of Hertz. The heat waves appearing from molecules far out in the Universe create “heated” electrons in an antenna which are transferred to a piece of superconducting material with a thickness of 3 and a length of 150 nanometers. This makes the superconducting material change into a normal conductor, giving rise to a dramatic change in electrical resistance which can be detected by an electronic amplifier. All parts of the system have extreme electrical properties from the points of view of sensitivity and noise. The ingredients, detector and amplifier give a maximum resolution power to squeeze information out of any molecular heat spectra.

The bolometric detector device is made of an ultrathin layer of niobiumnitride, a material that is superconducting at temperatures below -263C. With its extremely small dimensions, more than thousand detectors would fit in a cross section of a human hair.

The new device will be presented at the Hannover Fair, April 15 – 20 this year, by the Microtechnology Centre at Chalmers, MC2.

Jorun Fahle | alphagalileo
Further information:
http://www.chalmers.se

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>