Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitivity of brain center for ‘sound space’ defined by group led by Hebrew University researcher

20.09.2007
While the visual regions of the brain have been intensively mapped, many important regions for auditory processing remain “uncharted territory.” Now, researchers at the Hebrew University of Jerusalem and elsewhere have identified a region responsible for a key auditory process — perceiving “sound space,” the location of sounds, even when the listener is not concentrating on those sounds.

The findings settle a controversy in earlier studies that failed to establish the auditory region, called the planum temporale, as responsible for perception of auditory space by default.

The researchers, led by Dr. Leon Y. Deouell, of the Psychology Department and the Interdisciplinary Center for Neural Computation of the Hebrew University, and colleagues from the University of California, Berkeley, and the Weizmann Instititue of Science published their findings in the Sept. 20 issue of the journal Neuron, published by Cell Press. Working with Deouell on the project were Aaron S. Heller of University of California, Berkeley; Prof. Rafael Malach of the Weizmann Institute of Science; and Prof. Mark D’Esposito and Prof. Robert T. Knight of the University of California, Berkeley

Studies by other researchers had shown that the planum temporale was activated when people were asked to perform tasks in which they located sounds in space. However, many researchers believed that the region was responsible only for intentional processing of such information. And, in fact, previous studies had failed to establish that the planum temporale was responsible for automatic, nonintentional representation of spatial location.

Previous research done by Dr. Deouell and others has shown that some patients with brain damage may be specifically impaired in this function. Understanding how the normal brain machinery for this function is organized may help to understand why it breaks down and eventually how to mend it.

In their work, Deouell and colleagues used an improved experimental design that enabled them to more sensitively determine the brain’s auditory spatial location center. For example, they presented their human subjects with sounds against a background of silence, used headphones that more accurately reproduced sound location, and used noise with a rich spectrum, which has been shown to be more readily locatable in space. They also used sounds recorded from microphones placed in each subject’s own ears, and then played the same sounds back, thus tailoring the sounds specifically to the subjects’ own head and ears.

In their experiments, they presented bursts of the noise to the volunteers wearing the headphones while the subjects’ brains were scanned by functional magnetic resonance imaging. In this widely used brain-scanning technique, harmless magnetic fields and radio waves are used to image blood flow in brain regions, which reflects brain activity in those locations.

The subjects were instructed to ignore the sounds. And, to divert their attention, they either watched a movie with the sound turned off or were given a simple button-pushing task.

When the position of the noise bursts was varied in space, the researchers found that the planum temporale in the subjects’ brain was, indeed, activated. What’s more, the greater the number of distinct sound locations subjects heard during test runs, the greater the activity in the planum temporale.

The researchers thus concluded that their experiments “suggest that neurons in this region represent, in a nonintentional or preattentive fashion, the location of sound sources in the environment.”

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>