Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitivity of brain center for ‘sound space’ defined by group led by Hebrew University researcher

20.09.2007
While the visual regions of the brain have been intensively mapped, many important regions for auditory processing remain “uncharted territory.” Now, researchers at the Hebrew University of Jerusalem and elsewhere have identified a region responsible for a key auditory process — perceiving “sound space,” the location of sounds, even when the listener is not concentrating on those sounds.

The findings settle a controversy in earlier studies that failed to establish the auditory region, called the planum temporale, as responsible for perception of auditory space by default.

The researchers, led by Dr. Leon Y. Deouell, of the Psychology Department and the Interdisciplinary Center for Neural Computation of the Hebrew University, and colleagues from the University of California, Berkeley, and the Weizmann Instititue of Science published their findings in the Sept. 20 issue of the journal Neuron, published by Cell Press. Working with Deouell on the project were Aaron S. Heller of University of California, Berkeley; Prof. Rafael Malach of the Weizmann Institute of Science; and Prof. Mark D’Esposito and Prof. Robert T. Knight of the University of California, Berkeley

Studies by other researchers had shown that the planum temporale was activated when people were asked to perform tasks in which they located sounds in space. However, many researchers believed that the region was responsible only for intentional processing of such information. And, in fact, previous studies had failed to establish that the planum temporale was responsible for automatic, nonintentional representation of spatial location.

Previous research done by Dr. Deouell and others has shown that some patients with brain damage may be specifically impaired in this function. Understanding how the normal brain machinery for this function is organized may help to understand why it breaks down and eventually how to mend it.

In their work, Deouell and colleagues used an improved experimental design that enabled them to more sensitively determine the brain’s auditory spatial location center. For example, they presented their human subjects with sounds against a background of silence, used headphones that more accurately reproduced sound location, and used noise with a rich spectrum, which has been shown to be more readily locatable in space. They also used sounds recorded from microphones placed in each subject’s own ears, and then played the same sounds back, thus tailoring the sounds specifically to the subjects’ own head and ears.

In their experiments, they presented bursts of the noise to the volunteers wearing the headphones while the subjects’ brains were scanned by functional magnetic resonance imaging. In this widely used brain-scanning technique, harmless magnetic fields and radio waves are used to image blood flow in brain regions, which reflects brain activity in those locations.

The subjects were instructed to ignore the sounds. And, to divert their attention, they either watched a movie with the sound turned off or were given a simple button-pushing task.

When the position of the noise bursts was varied in space, the researchers found that the planum temporale in the subjects’ brain was, indeed, activated. What’s more, the greater the number of distinct sound locations subjects heard during test runs, the greater the activity in the planum temporale.

The researchers thus concluded that their experiments “suggest that neurons in this region represent, in a nonintentional or preattentive fashion, the location of sound sources in the environment.”

Jerry Barach | The Hebrew University of Jerusal
Further information:
http://www.huji.ac.il

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>