# Forum for Science, Industry and Business

Search our Site:

## Maths cracks egg flip

28.03.2002

Friction pushes a spinning egg from horizontal to vertical.

Mathematicians have cracked the conundrum of the spinning egg. A hard-boiled egg spun on its side flips upright because of friction between the egg and the table, they calculate1.

The egg’s elevation appears paradoxical. Its centre of gravity moves up - making the system seem to be gaining energy.

In fact, spinning energy, translated into a horizontal force, pushes the egg upright, say Keith Moffatt of the , Japan.

"The egg sacrifices spin energy to achieve its rise," says Moffatt. A twirled raw egg doesn’t rise because its liquid centre soaks up spinning energy from the shell, stopping it powering the egg’s ascent.

There would be no horizontal force on a perfectly smooth table, the duo point out. But neither must the surface grip the egg too much. The egg ascends in jerks, not a smooth roll.

"You have to have slipping between the egg and the surface," advises Moffatt. "If you tried this on a hard rubber table it wouldn’t rise."

"Friction is absolutely crucial," agrees physicist Bernie Nickel of the University of Guelph in Canada. Nickel has analysed the physics of the ’tippe-top’, a mushroom-shaped toy that flips from spinning on its round end to its stalk. "The egg is a rather more complicated shape," he says.

Understanding the dynamics of rotating objects is a fundamental problem. Spacecraft engineers, for example, need to know how their creations will spin in the void. But Moffatt cautions that the egg’s interaction with the surface underneath it makes it dangerous to extrapolate to zero gravity.

In a spin

There is a critical spinning speed below which the egg stays horizontal. This is about ten revolutions per second - roughly the speed it reaches after a firm flick of the wrist.

As the egg rises, its spinning form is more compact, making it whirl more quickly. "It’s like when a turning figure-skater speeds up by pulling in his or her arms," Nickel says.

The egg’s initial orientation doesn’t matter, and it will pirouette on either pole. "I think it prefers to go up on the sharper end," Moffatt speculates.

References
1. Moffatt, H.K. & Shimomura, Y. Spinning eggs - a paradox resolved. Nature, 416, 385 - 386, (2002).

JOHN WHITFIELD | © Nature News Service

### More articles from Interdisciplinary Research:

A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

### Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

### Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

### Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

### Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

### Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige