Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans dwelt in Ice-Age Tibet

27.03.2002


Humans were living in the Tibeatan mountains 16,000 years earlier than scientists had thought.
© Bill Bachmann/Alamy


Footprints and a fire found from 20,000 years ago.

Handprints and footprints 20,000 years old reveal that people lived on the Tibetan plateau at the height of the Ice Age - 16,000 years earlier than scientists had thought. The newly found signs of life cast doubt on the idea that a glacier a kilometre thick covered the plateau at that time.

David Zhang and S. H. Li of the University of Hong Kong found the marks of at least six individuals, including two children, in marble-like rocks that were once soft mud on a mountain slope 85 kilometres from the Tibetan capital, Lhasa1.



They also found a fireplace nearby, with the remains of a primitive stove, suggesting that the site was a camp, perhaps even a settlement.

Until now, the oldest known settlements on the Tibetan plateau dated from late Neolithic times, around 4,000 years ago. This had led some researchers to conclude that humans first migrated into Tibet around this time.

The encampment is also a nail in the coffin for the ice-covered plateau hypothesis. It indicates that at least part of the plateau, which today is 4,000 metres high on average, was free of ice even during this frigid period of Earth’s history.

Carbonate cast

The very hot spring that probably attracted the Ice-Age settlers also preserved their marks for posterity. The spring water is rich in dissolved minerals and gases. As carbon dioxide gas bubbles out of the water, minerals such as calcite precipitate out. This forms a soft mineral mud. As the mud dries, it turns into a hard, durable limestone called travertine.

So, thanks to the hot spring, the mountainside made plaster casts of the Ice-Age people who lived on it. Nineteen hand- and footprints are clearly visible in the stone surface.

Zhang and Li date the travertine deposit by the tiny grains of quartz that got trapped within it while the mud solidified. Quartz acts as a mineral clock. When heated, it emits light in proportion to the time that has elapsed since it was last warmed or exposed to sunlight.

This technique is called thermoluminescence dating. Energy builds up in trapped quartz because it is exposed to radiation from natural radioactive elements such as uranium and thorium in surrounding minerals. It emits this energy as light: the longer the exposure time, the higher the energy and so the brighter the light.

Because heat or sunlight releases the trapped energy, the quartz grain clock would have been set to zero when the grains became embedded in the warm mud from the spring.

References

  1. Zhang, D.D. & Li, S. H.Optical dating of Tibetan human hand- and footprints: an implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophysical Research Letters, 29, Published online DOI: 10.1029/2001GL013749 (2002).


PHILIP BALL | © Nature News Service

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>