Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans dwelt in Ice-Age Tibet

27.03.2002


Humans were living in the Tibeatan mountains 16,000 years earlier than scientists had thought.
© Bill Bachmann/Alamy


Footprints and a fire found from 20,000 years ago.

Handprints and footprints 20,000 years old reveal that people lived on the Tibetan plateau at the height of the Ice Age - 16,000 years earlier than scientists had thought. The newly found signs of life cast doubt on the idea that a glacier a kilometre thick covered the plateau at that time.

David Zhang and S. H. Li of the University of Hong Kong found the marks of at least six individuals, including two children, in marble-like rocks that were once soft mud on a mountain slope 85 kilometres from the Tibetan capital, Lhasa1.



They also found a fireplace nearby, with the remains of a primitive stove, suggesting that the site was a camp, perhaps even a settlement.

Until now, the oldest known settlements on the Tibetan plateau dated from late Neolithic times, around 4,000 years ago. This had led some researchers to conclude that humans first migrated into Tibet around this time.

The encampment is also a nail in the coffin for the ice-covered plateau hypothesis. It indicates that at least part of the plateau, which today is 4,000 metres high on average, was free of ice even during this frigid period of Earth’s history.

Carbonate cast

The very hot spring that probably attracted the Ice-Age settlers also preserved their marks for posterity. The spring water is rich in dissolved minerals and gases. As carbon dioxide gas bubbles out of the water, minerals such as calcite precipitate out. This forms a soft mineral mud. As the mud dries, it turns into a hard, durable limestone called travertine.

So, thanks to the hot spring, the mountainside made plaster casts of the Ice-Age people who lived on it. Nineteen hand- and footprints are clearly visible in the stone surface.

Zhang and Li date the travertine deposit by the tiny grains of quartz that got trapped within it while the mud solidified. Quartz acts as a mineral clock. When heated, it emits light in proportion to the time that has elapsed since it was last warmed or exposed to sunlight.

This technique is called thermoluminescence dating. Energy builds up in trapped quartz because it is exposed to radiation from natural radioactive elements such as uranium and thorium in surrounding minerals. It emits this energy as light: the longer the exposure time, the higher the energy and so the brighter the light.

Because heat or sunlight releases the trapped energy, the quartz grain clock would have been set to zero when the grains became embedded in the warm mud from the spring.

References

  1. Zhang, D.D. & Li, S. H.Optical dating of Tibetan human hand- and footprints: an implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophysical Research Letters, 29, Published online DOI: 10.1029/2001GL013749 (2002).


PHILIP BALL | © Nature News Service

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>