Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£3m Manchester Research Centre To Develop Vital New Science

14.05.2007
The University of Manchester is establishing a £3 million research centre dedicated to developing vital new science applicable to manufacturing processes, power station planning and analysis of the human body.

The Centre for Interdisciplinary Computational And Dynamical Analysis (CICADA - pronounced SIKARDA) - which brings together computer scientists, mathematicians and engineers - is being established with a £1.75 million grant from the Engineering and Physical Sciences Research Council (EPSRC).

Researchers are aiming to develop new fundamental knowledge and techniques, which in the long-term could be applied in many different areas, including flight controllers in aircraft and car safety systems.

The work will focus on systems in which there are complex interactions between components that switch discretely and other components that change continuously.

Techniques developed by computer scientists to make sure computer programmes work correctly - particularly important in safety critical situations - cannot be used in these systems due to the element of continuous change.

Modern society is relying increasingly on computer microprocessors in circumstances where failure might result in loss of life.

But academics say there is still a major gap between designs that humans are prepared to trust with their lives and those based on the most technically advanced solutions.

Professor David Broomhead from The School of Mathematics said: "In situations of life and death, we have little confidence in technically advanced digital systems due to their complexity and the lack of appropriate testing tools.

"Whenever an embedded computer system in something like an Electronic Stability Control (ESC) system in a car has to interact with the real world, we have what is known as a hybrid system."

Dr Jonathan Shapiro from The School of Computer Science said: "With a digital system it is, in theory at least, possible to list and therefore test all of the states it can be found in.

"But when a digital system begins to interact with the real world this is no longer the case and so new techniques must be devised that will allow us to predict the behaviour and test the design.

"Techniques developed in mathematics to predict the time course of continuous systems and the errors in the prediction, break down due to the discrete aspect of these systems."

CICADA will bring together pure and applied mathematicians, computer scientists, control theory engineers and even biologists, to work on this difficult but academically interesting and vital area.

The functionality of many biological systems involves the interaction of discrete and continuous processes.

Discrete state changes in the brain and cells are triggered by continuous changes in chemical concentrations. In biological systems there are generally many of these processes interacting in large complex science networks and these are hard to analyse using mathematical or computer science approaches that currently exist.

CICADA aims to attract internationally renowned scientists and create a focus for research activity and training for the next generation.

A feature of the Centre will be its operating model. It will focus on fostering a strong interaction between industry - where many of the hard problems are brought into sharpest focus - and academia, which has a wide range of new mathematical and computational techniques that can be applied.

The Centre will involve researchers and academics from the schools of Computer Science, Mathematics, Electrical and Electronic Engineering and The Faculty of Life Sciences.

Jon Keighren | alfa
Further information:
http://www.ls.manchester.ac.uk

More articles from Interdisciplinary Research:

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

nachricht The Attraction Effect: how our Brains Can Be Influenced
30.01.2017 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>