Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virtual-reality mummy


Technology unravels mysteries of ancient corpse.

Until recently, the only way to get inside a mummy was to unwrap it

Glassy-eyed with a hole in the head - meet Nesperennub, the virtual-reality mummy. A new three-dimensional reconstruction of his insides swoops through musty layers of linen to penetrate his holy skull, without putting the ancient artefact at risk.

Egyptologist John Taylor smuggled the British Museum’s sealed coffin into a hospital computerized tomography (CT or CAT) scanner after hours. The resulting 1,500 flat scans have now been pieced together to create the first interactive virtual-reality mummy. "It’s pretty exciting," says Taylor. The project was premiered at a summit on 3D visualization in Glasgow, UK, last week.

"It’s technology meets archaeology," says David Hughes of high-performance computing company SGI. They provided the powerful hardware and specially built software to manipulate the gigabyte of data churned out by the CAT scans.

The idea to work on the mummy evolved from, and used similar techniques to, the Visible Human Project, a 3D reconstruction of slices through a human body.

The new software reveals surface textures - users can roam freely and zoom in to any feature using an interactive magnifying facility called volume revving. "You can see the pieces of grit in the clay," marvels Hughes, and even the impression left by nerve endings under Nesperennub’s skull.

In the 1960s, X-rays showed something like a cap over Nesperennub’s head. It was thought to be his placenta, saved since birth for luck. But the new graphics reveal it to be a clay bowl, the purpose of which remains "a very puzzling thing", says Taylor. Zooming inside the skull reveals a small hole in his temple, which may be connected to his death.

Until recently, the only way to get inside a mummy was to unwrap it. But this popular nineteenth-century parlour activity makes tissues disintegrate. "A huge amount of data was lost," says Taylor. Simple X-rays are hard to interpret, as solid resin and hard-packed earth inside the corpse are difficult to penetrate.

Using the new visualization technique, archaeologists keen to learn about ancient Egyptians’ appearance and health can reconstruct any body part they like. Taylor plans to build a physical model of the skull and get a picture of Nesperennub’s face. Ultimately, the team hopes to put the reconstruction on public display in the British Museum and other museums worldwide.

It’s a wrap

Nesperennub was a good candidate for internal exploration, as a lot is known about his origins. Hieroglyphics and paintings on the coffin reveal that he was a priest around 800 BC, at the temple of Karnak in the ancient city of Thebes, the forerunner of modern-day Luxor.

He was buried near the Valley of the Kings on the banks of the Nile, and was brought to the British Museum in 1899, probably by travellers or diplomats. A modern ban on the export of antiquities from Egypt means that museums’ mummies are a finite resource.

During the 70-day mummification process, internal organs, except the heart, were usually removed from the body. A rectangular plate covers the incision where they were scraped out of Nesperennub. Like other mummies, he peers through glass fake eyes, inserted by embalmers to ensure that he could see in the afterlife.

Dried with salts and coated with resins and oils to prevent deterioration, the body was then wrapped in linen cloths, alongside a protective winged amulet.

HELEN PEARSON | © Nature News Service

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>