Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual-reality mummy

11.03.2002


Technology unravels mysteries of ancient corpse.


Until recently, the only way to get inside a mummy was to unwrap it
© SPL



Glassy-eyed with a hole in the head - meet Nesperennub, the virtual-reality mummy. A new three-dimensional reconstruction of his insides swoops through musty layers of linen to penetrate his holy skull, without putting the ancient artefact at risk.

Egyptologist John Taylor smuggled the British Museum’s sealed coffin into a hospital computerized tomography (CT or CAT) scanner after hours. The resulting 1,500 flat scans have now been pieced together to create the first interactive virtual-reality mummy. "It’s pretty exciting," says Taylor. The project was premiered at a summit on 3D visualization in Glasgow, UK, last week.


"It’s technology meets archaeology," says David Hughes of high-performance computing company SGI. They provided the powerful hardware and specially built software to manipulate the gigabyte of data churned out by the CAT scans.

The idea to work on the mummy evolved from, and used similar techniques to, the Visible Human Project, a 3D reconstruction of slices through a human body.

The new software reveals surface textures - users can roam freely and zoom in to any feature using an interactive magnifying facility called volume revving. "You can see the pieces of grit in the clay," marvels Hughes, and even the impression left by nerve endings under Nesperennub’s skull.

In the 1960s, X-rays showed something like a cap over Nesperennub’s head. It was thought to be his placenta, saved since birth for luck. But the new graphics reveal it to be a clay bowl, the purpose of which remains "a very puzzling thing", says Taylor. Zooming inside the skull reveals a small hole in his temple, which may be connected to his death.

Until recently, the only way to get inside a mummy was to unwrap it. But this popular nineteenth-century parlour activity makes tissues disintegrate. "A huge amount of data was lost," says Taylor. Simple X-rays are hard to interpret, as solid resin and hard-packed earth inside the corpse are difficult to penetrate.

Using the new visualization technique, archaeologists keen to learn about ancient Egyptians’ appearance and health can reconstruct any body part they like. Taylor plans to build a physical model of the skull and get a picture of Nesperennub’s face. Ultimately, the team hopes to put the reconstruction on public display in the British Museum and other museums worldwide.

It’s a wrap

Nesperennub was a good candidate for internal exploration, as a lot is known about his origins. Hieroglyphics and paintings on the coffin reveal that he was a priest around 800 BC, at the temple of Karnak in the ancient city of Thebes, the forerunner of modern-day Luxor.

He was buried near the Valley of the Kings on the banks of the Nile, and was brought to the British Museum in 1899, probably by travellers or diplomats. A modern ban on the export of antiquities from Egypt means that museums’ mummies are a finite resource.

During the 70-day mummification process, internal organs, except the heart, were usually removed from the body. A rectangular plate covers the incision where they were scraped out of Nesperennub. Like other mummies, he peers through glass fake eyes, inserted by embalmers to ensure that he could see in the afterlife.

Dried with salts and coated with resins and oils to prevent deterioration, the body was then wrapped in linen cloths, alongside a protective winged amulet.

HELEN PEARSON | © Nature News Service

More articles from Interdisciplinary Research:

nachricht Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs
07.11.2017 | Technische Universität München

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>