Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose-on-a-chip Aims To Mimic The Real Thing

04.03.2002


An ambitious project is underway to build the world’s smallest electronic nose.

If the project succeeds, it is expected that the technology would have many potential applications in areas such as environmental monitoring, healthcare and food safety.

The aim is to combine the odour sensors together with the signal processing components on to a single silicon chip, around a square centimetre in size. The instrument would require very little power and could be held comfortably in the palm of the hand.



The project is being carried out by scientists and engineers from the universities of Leicester, Warwick and Edinburgh, with funding from the Swindon based Engineering and Physical Sciences Research Council.

Electronic noses have been around for some years, and are used in the food, beverage and perfumery industries. However, the machines are large, have limited sensitivity and need to be re-calibrated frequently.

“We are hoping we can improve on existing systems by following biology much more closely,” says Dr Tim Pearce of the University of Leicester, who is co-ordinating the research. “The information processing of our system is very much inspired by how the olfactory system works in nature.”

In common with most existing electronic noses, the sensing part of the device will consist of arrays of electrically conductive polymers. However, the new system intends to process and interpret the signals in a way much more akin to biology.

“When sufficient numbers of odour molecules interact with an olfactory receptor neuron in the real nose, an action potential is induced – a spike of voltage that is sent down a nerve fibre to be processed by the olfactory pathway of the brain,” says Dr Pearce. “We will design our system to do a similar thing. When the mixture of odour molecules meets our sensor array, a volley of spikes will be generated. If there is a high concentration of odour molecules, trains of spikes will be generated and their frequency will be proportional to the concentration of the molecule.”

This ‘neuromorphic’ approach introduces a time factor into the system – the number of spikes per second – unlike the signals in conventional electronic noses, which usually ignore time information. This gives the signal processor another layer of information, which could be useful, for example, when trying to distinguish between complex mixtures of odour molecules.

At Warwick University Professor Julian Gardner is assembling novel mechanisms for channelling the odours on to the sensor arrays. Professor Gardner says, “We are taking recent developments in the fields of nanotechnology and polymer physics to design novel microsystems that are able to mimic our nasal passages and olfactory sensors. Combining such technologies with biologically-inspired signal processing methods developed at Leicester and Edinburgh should lead to a new generation of so-called micro-noses or a nose-on-a-chip.”

At Edinburgh Dr Alister Hamilton’s team is devising ways to integrate the whole system on to a single silicon chip. “We are designing analogue circuits that interface to the sensor array developed at Warwick, and sending the signals into some analogue circuits that mimic the mammalian olfactory system,” says Dr Hamilton. “We’re using parallel analogue computation strategies that are derived from biology rather than implementing a conventional digital processor. By concentrating on very low power consumption analogue circuits we hope to produce a system with long battery life.”

Jane Reck | alphagalileo
Further information:
http://www.le.ac.uk/eg/tcp1/avlsi/

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>