Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nose-on-a-chip Aims To Mimic The Real Thing


An ambitious project is underway to build the world’s smallest electronic nose.

If the project succeeds, it is expected that the technology would have many potential applications in areas such as environmental monitoring, healthcare and food safety.

The aim is to combine the odour sensors together with the signal processing components on to a single silicon chip, around a square centimetre in size. The instrument would require very little power and could be held comfortably in the palm of the hand.

The project is being carried out by scientists and engineers from the universities of Leicester, Warwick and Edinburgh, with funding from the Swindon based Engineering and Physical Sciences Research Council.

Electronic noses have been around for some years, and are used in the food, beverage and perfumery industries. However, the machines are large, have limited sensitivity and need to be re-calibrated frequently.

“We are hoping we can improve on existing systems by following biology much more closely,” says Dr Tim Pearce of the University of Leicester, who is co-ordinating the research. “The information processing of our system is very much inspired by how the olfactory system works in nature.”

In common with most existing electronic noses, the sensing part of the device will consist of arrays of electrically conductive polymers. However, the new system intends to process and interpret the signals in a way much more akin to biology.

“When sufficient numbers of odour molecules interact with an olfactory receptor neuron in the real nose, an action potential is induced – a spike of voltage that is sent down a nerve fibre to be processed by the olfactory pathway of the brain,” says Dr Pearce. “We will design our system to do a similar thing. When the mixture of odour molecules meets our sensor array, a volley of spikes will be generated. If there is a high concentration of odour molecules, trains of spikes will be generated and their frequency will be proportional to the concentration of the molecule.”

This ‘neuromorphic’ approach introduces a time factor into the system – the number of spikes per second – unlike the signals in conventional electronic noses, which usually ignore time information. This gives the signal processor another layer of information, which could be useful, for example, when trying to distinguish between complex mixtures of odour molecules.

At Warwick University Professor Julian Gardner is assembling novel mechanisms for channelling the odours on to the sensor arrays. Professor Gardner says, “We are taking recent developments in the fields of nanotechnology and polymer physics to design novel microsystems that are able to mimic our nasal passages and olfactory sensors. Combining such technologies with biologically-inspired signal processing methods developed at Leicester and Edinburgh should lead to a new generation of so-called micro-noses or a nose-on-a-chip.”

At Edinburgh Dr Alister Hamilton’s team is devising ways to integrate the whole system on to a single silicon chip. “We are designing analogue circuits that interface to the sensor array developed at Warwick, and sending the signals into some analogue circuits that mimic the mammalian olfactory system,” says Dr Hamilton. “We’re using parallel analogue computation strategies that are derived from biology rather than implementing a conventional digital processor. By concentrating on very low power consumption analogue circuits we hope to produce a system with long battery life.”

Jane Reck | alphagalileo
Further information:

More articles from Interdisciplinary Research:

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>