Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel salamander robot crawls its way up the evolutionary ladder

12.03.2007
A group of European researchers has developed a spinal cord model of the salamander and implemented it in a novel amphibious salamander-like robot. The robot changes its speed and gait in response to simple electrical signals, suggesting that the distributed neural system in the spinal cord holds the key to vertebrates’ complex locomotor capabilities.

In a paper appearing in the March 9, 2007 issue of the journal Science, scientists from the EPFL in Switzerland and the INSERM research center/University of Bordeaux in France introduce their robot, Salamandra Robotica. This four-legged yellow creature reveals a great deal about the evolution of vertebrate locomotion. It’s also a vivid demonstration that robots can be used to test and verify biological concepts, and that very often nature herself offers ideal solutions for robotics design.

The researchers used a numerical model of the salamander’s spinal cord to explore three fundamental issues related to this vertebrate’s movement: what were the changes in the spinal cord that made it possible to evolve from aquatic to terrestrial locomotion? How are the limb and axial movements coordinated? And how is a simple electrical signal from the brain stem translated by the spinal cord into a change in gait?

Once they thought they had answers to these questions, the team implemented the model – a system of coupled oscillators representing the neural networks in the spinal cord – on a primitive salamander-like robot. Simple electrical signals, like the signals sent from the upper brain to the spinal cord, were sent wirelessly from a laptop to the robot. These signals were enough to cause the robot to change its speed and direction and change from walking to swimming. The model therefore provides a potential explanation – relevant for all four-legged organisms – of how agile locomotion is controlled by distributed neural mechanisms located in the spinal cord.

The robot serves here as a useful tool for neurobiology, explains EPFL professor Auke Ijspeert. "We used the robot to show that our model actually reflects reality.

The robot was very useful to validate that our model could effectively modulate speed, direction and gait – aspects that need a mechanical "body" to be properly evaluated – and also to verify that the generated movements are close to those of a real salamander."

This research may ultimately point to a way to gain better understanding of the more sophisticated circuits in the human spinal cord. If the control signals received by the spinal cord could be identified, perhaps it would be possible to re-initiate these by electrical stimulations in patients with spinal cord injuries.

And it’s a vivid demonstration that biology offers unique ideas for robotics design. "Nature found a nice way of making a sophisticated circuit in the spinal cord and then controlling the muscles from there," notes Ijspeert. "It’s a fantastic solution for coordinating multiple degrees of freedom in a simple distributed way." Robots that could change their speed, direction, and gait based on simple remote signals, like living organisms, would be extremely useful in search and rescue operations, for example.

Auke Ijspeert | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>