Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado State leads researchers on quest to produce rubber from sunflowers and guayule

26.02.2002


Colorado State University is leading a team of researchers who plan to develop sunflowers into a rubber-producing crop, alleviating the harvest of rubber trees in Southeast Asia and Brazil - currently the only natural source of rubber in the world.



The United States is currently totally dependent upon imports for its rubber supply, importing nearly 1.3 million tons a year at a cost of $2 billion. Almost all natural rubber comes from rubber trees including those grown on plantations in Malaysia and in Brazilian rain forests. Currently the production of rubber trees on Malaysian plantations is diminishing because farmers there consider it to be a crop with low value.

Research at Colorado State will be based at the Western Colorado Research Center, a part of the Agricultural Experiment Station at Colorado State. It will explore ways to increase rubber production in sunflowers. Other project collaborators will look at optimizing rubber production in guayule, a plant native to southwestern states.


"Sunflowers naturally produce a small amount of rubber," said Calvin Pearson, Colorado State professor and research agronomist and research project coordinator. "By developing new sunflower varieties, the quality and quantity of rubber in sunflowers can be increased. Guayule naturally produces high quality rubber, but more research is needed to make it a more profitable crop. By developing these crops, we’re able to support our national economy and become less dependent upon imports."

Natural rubber is an irreplaceable raw material and is a component of more than 400,000 products including 400 medical devices. The United States, which uses about 20 percent of the global rubber supply, is the single largest consumer of natural rubber. About half of the global rubber supply is natural, and the other half is synthetic. The federal government last year made finding alternative, domestic sources of rubber production a national priority.

"Although rubber supplies are currently sufficient to meet market demand, the supply will likely diminish since plantation owners don’t see the crop as profitable," said Lee Sommers, Colorado State Agricultural Experiment Station director. "This could lead to stress on the American economy since so many products we use in our day-to-day life depend upon rubber."

The four-year research project will investigate enhancing rubber production in crops suitable for the United States through developing environmentally-friendly, productive varieties of sunflower and guayule plants. The group received a $2.5 million U.S. Department of Agriculture grant to foster rubber production. Colorado State built a new laboratory and growth chamber at the Western Colorado Research Center in Fruita.

In addition to Pearson, the core team of researchers collaborating on the project are Katrina Cornish, plant physiologist and rubber biochemist, USDA-Agricultural Research Service, Albany, Calif; Jay Keasling, professor and metabolic engineer, University of California, Berkeley; Dennis T. Ray, professor and plant breeder, University of Arizona; and John Vederas, chemistry professor, University of Alberta, Canada.

Others who will participate are Andrew McAloon, cost engineer, USDA-Agricultural Research Service, Wyndmoore, Penn.; and Harold Larson, associate professor and plant pathologist; Robert Hammon, research associate and entomologist; and Rod L. Sharp, Cooperative Extension agriculture and business management economist specialist, all with Colorado State.

| Colorado State University

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>