Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado State leads researchers on quest to produce rubber from sunflowers and guayule

26.02.2002


Colorado State University is leading a team of researchers who plan to develop sunflowers into a rubber-producing crop, alleviating the harvest of rubber trees in Southeast Asia and Brazil - currently the only natural source of rubber in the world.



The United States is currently totally dependent upon imports for its rubber supply, importing nearly 1.3 million tons a year at a cost of $2 billion. Almost all natural rubber comes from rubber trees including those grown on plantations in Malaysia and in Brazilian rain forests. Currently the production of rubber trees on Malaysian plantations is diminishing because farmers there consider it to be a crop with low value.

Research at Colorado State will be based at the Western Colorado Research Center, a part of the Agricultural Experiment Station at Colorado State. It will explore ways to increase rubber production in sunflowers. Other project collaborators will look at optimizing rubber production in guayule, a plant native to southwestern states.


"Sunflowers naturally produce a small amount of rubber," said Calvin Pearson, Colorado State professor and research agronomist and research project coordinator. "By developing new sunflower varieties, the quality and quantity of rubber in sunflowers can be increased. Guayule naturally produces high quality rubber, but more research is needed to make it a more profitable crop. By developing these crops, we’re able to support our national economy and become less dependent upon imports."

Natural rubber is an irreplaceable raw material and is a component of more than 400,000 products including 400 medical devices. The United States, which uses about 20 percent of the global rubber supply, is the single largest consumer of natural rubber. About half of the global rubber supply is natural, and the other half is synthetic. The federal government last year made finding alternative, domestic sources of rubber production a national priority.

"Although rubber supplies are currently sufficient to meet market demand, the supply will likely diminish since plantation owners don’t see the crop as profitable," said Lee Sommers, Colorado State Agricultural Experiment Station director. "This could lead to stress on the American economy since so many products we use in our day-to-day life depend upon rubber."

The four-year research project will investigate enhancing rubber production in crops suitable for the United States through developing environmentally-friendly, productive varieties of sunflower and guayule plants. The group received a $2.5 million U.S. Department of Agriculture grant to foster rubber production. Colorado State built a new laboratory and growth chamber at the Western Colorado Research Center in Fruita.

In addition to Pearson, the core team of researchers collaborating on the project are Katrina Cornish, plant physiologist and rubber biochemist, USDA-Agricultural Research Service, Albany, Calif; Jay Keasling, professor and metabolic engineer, University of California, Berkeley; Dennis T. Ray, professor and plant breeder, University of Arizona; and John Vederas, chemistry professor, University of Alberta, Canada.

Others who will participate are Andrew McAloon, cost engineer, USDA-Agricultural Research Service, Wyndmoore, Penn.; and Harold Larson, associate professor and plant pathologist; Robert Hammon, research associate and entomologist; and Rod L. Sharp, Cooperative Extension agriculture and business management economist specialist, all with Colorado State.

| Colorado State University

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>