Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universities in £1.5m drive to cut cost of solar power

27.02.2007
Chemists, physicists, materials scientists and electrical engineers in Manchester and London are embarking on a £1.5m project to develop new and potentially cheaper ways of generating solar power.

The three and a half year project, funded by the Engineering and Physical Sciences Research Council (EPSRC), will investigate a number of new and novel solar cell designs, in an attempt to produce a more efficient system for generating green energy.

The consortium of researchers, led by Professor Paul O'Brien from The University of Manchester's School of Chemistry and Professor Jenny Nelson from The Department of Physics at Imperial College London, will investigate new designs that utilise intrinsically inexpensive materials and cheap fabrication methodologies.

The research team are aiming to build demonstration hybrid solar cells that have the long-term potential to be mass-produced and to achieve an energy conversion efficiency approaching ten per cent.

The cells will be made from both organic polymeric carbon-based materials and small particles of inorganic semiconductors.

Most designs are expected to draw on nanotechnology, with researchers planning to use so-called PbS nanorods - small cylinders of lead sulphide that are around 100 times smaller than a human hair.

Academics will also use semiconductor quantum dots - extremely small particles measuring around one ten-millionth of an inch - to absorb light.

Professor O'Brien said: "Alternatives to fossil fuel-based electricity sources are needed urgently, to reduce the environmental impact of electrical power generation and to secure our supply of electricity in the future.

"The widespread implementation of solar electricity requires a significant reduction in cost and a successful outcome to this project has the potential to provide a step-change solar cell technology."

Professor Nelson said: "A major reduction in the cost of solar power through the use of low-cost materials could seriously accelerate the take-up of renewable energy technology and make it much more accessible to the developing world."

The project is funded equally by the EPSRC's Materials and Energy programmes and will employ four postdoctoral research associates and two PhD students across the two universities.

By spreading the work across chemistry, electrical engineering, physics and materials departments, the consortium will investigate areas such as materials synthesis and characterisation, device fabrication and system integration.

Research at the University of Manchester will involve academics from the School of Chemistry, The School of Electronic and Electrical Engineering, The School of Materials and The School of Physics and Astronomy - making it a truly interdisciplinary project.

The funding award is the latest boost for The University of Manchester's School of Chemistry, which will officially open an expansive new £14m teaching and research extension tomorrow (Wednesday 28 February 2007).

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>