Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universities in £1.5m drive to cut cost of solar power

27.02.2007
Chemists, physicists, materials scientists and electrical engineers in Manchester and London are embarking on a £1.5m project to develop new and potentially cheaper ways of generating solar power.

The three and a half year project, funded by the Engineering and Physical Sciences Research Council (EPSRC), will investigate a number of new and novel solar cell designs, in an attempt to produce a more efficient system for generating green energy.

The consortium of researchers, led by Professor Paul O'Brien from The University of Manchester's School of Chemistry and Professor Jenny Nelson from The Department of Physics at Imperial College London, will investigate new designs that utilise intrinsically inexpensive materials and cheap fabrication methodologies.

The research team are aiming to build demonstration hybrid solar cells that have the long-term potential to be mass-produced and to achieve an energy conversion efficiency approaching ten per cent.

The cells will be made from both organic polymeric carbon-based materials and small particles of inorganic semiconductors.

Most designs are expected to draw on nanotechnology, with researchers planning to use so-called PbS nanorods - small cylinders of lead sulphide that are around 100 times smaller than a human hair.

Academics will also use semiconductor quantum dots - extremely small particles measuring around one ten-millionth of an inch - to absorb light.

Professor O'Brien said: "Alternatives to fossil fuel-based electricity sources are needed urgently, to reduce the environmental impact of electrical power generation and to secure our supply of electricity in the future.

"The widespread implementation of solar electricity requires a significant reduction in cost and a successful outcome to this project has the potential to provide a step-change solar cell technology."

Professor Nelson said: "A major reduction in the cost of solar power through the use of low-cost materials could seriously accelerate the take-up of renewable energy technology and make it much more accessible to the developing world."

The project is funded equally by the EPSRC's Materials and Energy programmes and will employ four postdoctoral research associates and two PhD students across the two universities.

By spreading the work across chemistry, electrical engineering, physics and materials departments, the consortium will investigate areas such as materials synthesis and characterisation, device fabrication and system integration.

Research at the University of Manchester will involve academics from the School of Chemistry, The School of Electronic and Electrical Engineering, The School of Materials and The School of Physics and Astronomy - making it a truly interdisciplinary project.

The funding award is the latest boost for The University of Manchester's School of Chemistry, which will officially open an expansive new £14m teaching and research extension tomorrow (Wednesday 28 February 2007).

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>