Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BASROC secures funding for revolutionary particle accelerators for science, technology and medicine

The British Accelerator Science and Radiation Oncology Consortium (BASROC) is pleased to announce that it has been awarded a major £8.5M grant from the RCUK Basic Technology programme to develop and realise an entirely new generation of compact high energy particle accelerators for use in science, technology and medicine.

The new devices, known as non-scaling fixed field alternating gradient accelerators – or ns-FFAG accelerators for short – will be smaller, simpler and significantly cheaper than their synchrotron and cyclotron counterparts. It is therefore expected that they will have a major impact as next generation hospital-based clinical accelerators for proton and carbon ion beam treatment of cancer.

Although no ns-FFAG accelerator has ever been constructed, BASROC believes that its research project, entitled CONFORM, will move rapidly from conceptual design to construction of a model electron accelerator (EMMA) which will be located at the CCLRC’s Daresbury Laboratory. The experience gained in the development and operation of EMMA will inform the design and eventual construction of a prototype proton/carbon ion ns-FFAG accelerator for medical applications (PAMELA).

In addition, an extensive parallel R&D programme will evaluate the potential of ns-FFAG accelerators as proton drivers for applications in scientific and technological fields as diverse as energy and environment (eg accelerator driven sub critical reactors, waste transmutation), materials research (eg advanced neutron and muon sources for studies of the structure and dynamics of materials), and fundamental physics (eg the neutrino factory).

Professor Roger Barlow of Manchester University, Project Leader of CONFORM, says
“The Basic Technology funding means that the UK will reclaim centre stage in the design, construction and application of advanced particle accelerators”

Professor Bleddyn Jones, Consultant in Clinical Oncology & Applied Radiobiology University Hospital Birmingham comments “I anticipate that the flexibility and cost-effectiveness of the ns-FFAG accelerators will ultimately make particle radiotherapy more accessible within the UK, with considerable benefits in the reduction of radiation side effects, improved quality of life and prospects of cure in a wide variety of cancers.”

Professor Bob Cywinski from the University of Leeds comments “CONFORM will revolutionise accelerator science. We can envisage powerful but compact accelerators that are fully optimised for a single application. This is a significant change from conventional philosophy in which single large accelerators are generally built for several applications – a situation in which everyone compromises.”

Dr David Wilcox of the High Power RF Faraday Partnership and Chairman of the BASROC Board, says “CONFORM will provide a real focus for advanced accelerator technology and manufacturing in the UK. The resulting development of industrial expertise will enable the UK to secure a competitive edge in the provision of accelerator components for major international projects.”

CONFORM funding will commence in March 2007 and the new accelerator should start operation within 3 years.

Professor Roger Barlow | alfa
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>