Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BASROC secures funding for revolutionary particle accelerators for science, technology and medicine

12.12.2006
The British Accelerator Science and Radiation Oncology Consortium (BASROC) is pleased to announce that it has been awarded a major £8.5M grant from the RCUK Basic Technology programme to develop and realise an entirely new generation of compact high energy particle accelerators for use in science, technology and medicine.

The new devices, known as non-scaling fixed field alternating gradient accelerators – or ns-FFAG accelerators for short – will be smaller, simpler and significantly cheaper than their synchrotron and cyclotron counterparts. It is therefore expected that they will have a major impact as next generation hospital-based clinical accelerators for proton and carbon ion beam treatment of cancer.

Although no ns-FFAG accelerator has ever been constructed, BASROC believes that its research project, entitled CONFORM, will move rapidly from conceptual design to construction of a model electron accelerator (EMMA) which will be located at the CCLRC’s Daresbury Laboratory. The experience gained in the development and operation of EMMA will inform the design and eventual construction of a prototype proton/carbon ion ns-FFAG accelerator for medical applications (PAMELA).

In addition, an extensive parallel R&D programme will evaluate the potential of ns-FFAG accelerators as proton drivers for applications in scientific and technological fields as diverse as energy and environment (eg accelerator driven sub critical reactors, waste transmutation), materials research (eg advanced neutron and muon sources for studies of the structure and dynamics of materials), and fundamental physics (eg the neutrino factory).

Professor Roger Barlow of Manchester University, Project Leader of CONFORM, says
“The Basic Technology funding means that the UK will reclaim centre stage in the design, construction and application of advanced particle accelerators”

Professor Bleddyn Jones, Consultant in Clinical Oncology & Applied Radiobiology University Hospital Birmingham comments “I anticipate that the flexibility and cost-effectiveness of the ns-FFAG accelerators will ultimately make particle radiotherapy more accessible within the UK, with considerable benefits in the reduction of radiation side effects, improved quality of life and prospects of cure in a wide variety of cancers.”

Professor Bob Cywinski from the University of Leeds comments “CONFORM will revolutionise accelerator science. We can envisage powerful but compact accelerators that are fully optimised for a single application. This is a significant change from conventional philosophy in which single large accelerators are generally built for several applications – a situation in which everyone compromises.”

Dr David Wilcox of the High Power RF Faraday Partnership and Chairman of the BASROC Board, says “CONFORM will provide a real focus for advanced accelerator technology and manufacturing in the UK. The resulting development of industrial expertise will enable the UK to secure a competitive edge in the provision of accelerator components for major international projects.”

CONFORM funding will commence in March 2007 and the new accelerator should start operation within 3 years.

Professor Roger Barlow | alfa
Further information:
http://basroc.rl.ac.uk/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>