Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BASROC secures funding for revolutionary particle accelerators for science, technology and medicine

12.12.2006
The British Accelerator Science and Radiation Oncology Consortium (BASROC) is pleased to announce that it has been awarded a major £8.5M grant from the RCUK Basic Technology programme to develop and realise an entirely new generation of compact high energy particle accelerators for use in science, technology and medicine.

The new devices, known as non-scaling fixed field alternating gradient accelerators – or ns-FFAG accelerators for short – will be smaller, simpler and significantly cheaper than their synchrotron and cyclotron counterparts. It is therefore expected that they will have a major impact as next generation hospital-based clinical accelerators for proton and carbon ion beam treatment of cancer.

Although no ns-FFAG accelerator has ever been constructed, BASROC believes that its research project, entitled CONFORM, will move rapidly from conceptual design to construction of a model electron accelerator (EMMA) which will be located at the CCLRC’s Daresbury Laboratory. The experience gained in the development and operation of EMMA will inform the design and eventual construction of a prototype proton/carbon ion ns-FFAG accelerator for medical applications (PAMELA).

In addition, an extensive parallel R&D programme will evaluate the potential of ns-FFAG accelerators as proton drivers for applications in scientific and technological fields as diverse as energy and environment (eg accelerator driven sub critical reactors, waste transmutation), materials research (eg advanced neutron and muon sources for studies of the structure and dynamics of materials), and fundamental physics (eg the neutrino factory).

Professor Roger Barlow of Manchester University, Project Leader of CONFORM, says
“The Basic Technology funding means that the UK will reclaim centre stage in the design, construction and application of advanced particle accelerators”

Professor Bleddyn Jones, Consultant in Clinical Oncology & Applied Radiobiology University Hospital Birmingham comments “I anticipate that the flexibility and cost-effectiveness of the ns-FFAG accelerators will ultimately make particle radiotherapy more accessible within the UK, with considerable benefits in the reduction of radiation side effects, improved quality of life and prospects of cure in a wide variety of cancers.”

Professor Bob Cywinski from the University of Leeds comments “CONFORM will revolutionise accelerator science. We can envisage powerful but compact accelerators that are fully optimised for a single application. This is a significant change from conventional philosophy in which single large accelerators are generally built for several applications – a situation in which everyone compromises.”

Dr David Wilcox of the High Power RF Faraday Partnership and Chairman of the BASROC Board, says “CONFORM will provide a real focus for advanced accelerator technology and manufacturing in the UK. The resulting development of industrial expertise will enable the UK to secure a competitive edge in the provision of accelerator components for major international projects.”

CONFORM funding will commence in March 2007 and the new accelerator should start operation within 3 years.

Professor Roger Barlow | alfa
Further information:
http://basroc.rl.ac.uk/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>